STANDARDIZED # UXO TECHNOLOGY DEMONSTRATION SITE **MOGULS SCORING RECORD NO. 136** SITE LOCATION: U.S. ARMY YUMA PROVING GROUND DEMONSTRATOR: U.S. ARMY CORPS OF ENGINEERS ENGINEERING RESEARCH AND DEVELOPMENT CENTER 3909 HALLS FERRY ROAD VICKSBURG, MS 39180-6199 TECHNOLOGY TYPE/PLATFORM: GEM-3/PUSHCART PREPARED BY: U.S. ARMY ABERDEEN TEST CENTER ABERDEEN PROVING GROUND, MD 21005-5059 **JUNE 2005** Prepared for: U.S. ARMY ENVIRONMENTAL CENTER ABERDEEN PROVING GROUND, MD 21010-5401 U.S. ARMY DEVELOPMENTAL TEST COMMAND ABERDEEN PROVING GROUND, MD 21005-5055 DISTRIBUTION UNLIMITED, JUNE 2005. # **NOTICE** The use of trade names in this document does not constitute an official endorsement or approval of the use of such commercial hardware or software. This document may not be cited for purposes of advertisement. #### Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Depar timent of Defense, Washington Headquarters Services, Director ate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 21 May 2003 Final June 2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER STANDARDIZED UXO TECHNOLOGY DEMONSTRATION SITE MOGULS SCORING RECORD NO. 136 (U.S. ARMY CORPS OF ENGINEERS ENGINEERING RESEARCH AND DEVELOPMENT 5b. GRANT NUMBER CENTER (ERDC)) 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 8-CO-160-UXO-021 Overbay, Larry; Robitaille, George The Standardized UXO Technology Demonstration Site Scoring Committee 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Commander ATC-9014 U.S. Army Aberdeen Test Center ATTN: CSTE-STC-ATC-SL-E Aberdeen Proving Ground, MD 21005-5059 10. SPONSOR/MONITOR'S ACRONYM(S) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Commander U.S. Army Environmental Center ATTN: ŠFIM-AEC-ATT 11. SPONSOR/MONITOR'S REPORT Aberdeen Proving Ground, MD 21005-5401 NUMBER(S) Same as item 8 12. DISTRIBUTION/AVAILABILITY STATEMENT Distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This scoring record documents the efforts of ERDC to detect and discriminate inert unexploded ordnance (UXO) utilizing the YPG Standardized UXO Technology Demonstration Site Mogul. The scoring record was coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee. Organizations on the committee include the U.S. Army This scoring record documents the efforts of ERDC to detect and discriminate inert unexploded ordnance (UXO) utilizing the YPG Standardized UXO Technology Demonstration Site Mogul. The scoring record was coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee. Organizations on the committee include the U.S. Army Corps of Engineers, the Environmental Security Technology Certification Program, the Strategic Environmental Research and Development Program, the Institute for Defense Analysis, the U.S. Army Environmental Center, and the U.S. Army Aberdeen Test Center. #### 15. SUBJECT TERMS ERDC UXO Standardized Site, YPG, Standardized UXO Technology Demonstration Site Program, Moguls UXO GEM-3/Pushcart | SECURITY CLASSIFICATION OF: | ADOTDACT | 18. NUMBER
OF | 19a. NAME OF RESPONSIBLE PERSON | |-------------------------------------|------------|------------------|---| | REPORT b. ABSTRACT c. THIS PAGE | , <u> </u> | PAGES | | | nclassified Unclassified Unclassifi | UL UL | | 19b. TELEPHONE NUMBER (Include area code) | # TABLE OF CONTENTS | | | PAG l | |-------------------|---|--| | | SECTION 1. GENERAL INFORMATION | | | 1.1
1.2 | BACKGROUND | 1
1
1
3
4 | | 1.3 | STANDARD AND NONSTANDARD INERT ORDNANCE TARGETS | 4 | | | SECTION 2. DEMONSTRATION | | | 2.1 | DEMONSTRATOR INFORMATION 2.1.1 Demonstrator Point of Contact (POC) and Address 2.1.2 System Description 2.1.3 Data Processing Description 2.1.4 Data Submission Format 2.1.5 Demonstrator Quality Assurance (QA) and Quality Control (QC) 2.1.6 Additional Records YPG SITE INFORMATION 2.2.1 Location 2.2.2 Soil Type 2.2.3 Test Areas | 5
5
5
6
6
7
7
8
8
8 | | | SECTION 3. FIELD DATA | | | 3.1
3.2
3.3 | DATE OF FIELD ACTIVITIES AREAS TESTED/NUMBER OF HOURS TEST CONDITIONS 3.3.1 Weather Conditions 3.3.2 Field Conditions 3.3.3 Soil Moisture | 11
11
11
11
11 | | 3.4
3.5
3.6 | FIELD ACTIVITIES 3.4.1 Setup/Mobilization 3.4.2 Calibration 3.4.3 Downtime Occasions 3.4.4 Data Collection 3.4.5 Demobilization PROCESSING TIME DEMONSTRATOR'S FIELD SURVEYING METHOD | 12
12
12
12
12
12
12
13
13 | | 3.7 | SUMMARY OF DAILY LOGS | 13 | # SECTION 4. TECHNICAL PERFORMANCE RESULTS | | | PAGE | |------------|--|-------------| | 4.1 | ROC CURVES USING ALL ORDNANCE CATEGORIES | 15 | | 4.2 | ROC CURVES USING ORDNANCE LARGER THAN 20 MM | 16 | | 4.3
4.4 | PERFORMANCE SUMMARIES EFFICIENCY, REJECTION RATES, AND TYPE CLASSIFICATION | 18
19 | | 4.4 | LOCATION ACCURACY | 19 | | 4.5 | LOCATION ACCURACT | 1) | | | SECTION 5. ON-SITE LABOR COSTS | | | | | | | <u>S</u>] | ECTION 6. COMPARISON OF RESULTS TO OPEN FIELD DEMONSTRA | <u>TION</u> | | 6.1 | SUMMARY OF RESULTS FROM OPEN FIELD DEMONSTRATION | 23 | | 6.2 | COMPARISON OF ROC CURVES USING ALL ORDNANCE | | | _ | CATEGORIES | 23 | | 6.3 | COMPARISON OF ROC CURVES USING ORDNANCE LARGER THAN 20 MM | 25 | | 6.4 | STATISTICAL COMPARISONS | 25
26 | | | | | | | SECTION 7. APPENDIXES | | | A | TERMS AND DEFINITIONS | A-1 | | В | DAILY WEATHER LOGS | B-1 | | C | SOIL MOISTURE | C-1 | | D | DAILY ACTIVITY LOGS | D-1 | | E | REFERENCES | E-1 | | F | ABBREVIATIONS | F-1 | # **SECTION 1. GENERAL INFORMATION** #### 1.1 BACKGROUND Technologies under development for the detection and discrimination of unexploded ordnance (UXO) require testing so that their performance can be characterized. To that end, Standardized Test Sites have been developed at Aberdeen Proving Ground (APG), Maryland and U.S. Army Yuma Proving Ground (YPG), Arizona. These test sites provide a diversity of geology, climate, terrain, and weather as well as diversity in ordnance and clutter. Testing at these sites is independently administered and analyzed by the government for the purposes of characterizing technologies, tracking performance with system development, comparing performance of different systems, and comparing performance in different environments. The Standardized UXO Technology Demonstration Site Program is a multi-agency program spearheaded by the U.S. Army Environmental Center (AEC). The U.S. Army Aberdeen Test Center (ATC) and the U.S. Army Corps of Engineers Engineering Research and Development Center (ERDC) provide programmatic support. The program is being funded and supported by the Environmental Security Technology Certification Program (ESTCP), the Strategic Environmental Research and Development Program (SERDP) and the Army Environmental Quality Technology Program (EQT). #### 1.2 SCORING OBJECTIVES The objective in the Standardized UXO Technology Demonstration Site Program is to evaluate the detection and discrimination capabilities of a given technology under various field and soil conditions. Inert munitions and clutter items are positioned in various orientations and depths in the ground. The evaluation objectives are as follows: - a. To determine detection and discrimination effectiveness under realistic scenarios that vary targets, geology, clutter, topography, and vegetation. - b. To determine cost, time, and manpower requirements to operate the technology. - c. To determine demonstrator's ability to analyze survey data in a timely manner and provide prioritized "Target Lists" with associated confidence levels. - d. To provide independent site management to enable the collection of high quality, ground-truth, geo-referenced data for post-demonstration analysis. #### 1.2.1 Scoring Methodology a. The scoring of the demonstrator's performance is conducted in two stages. These two stages are termed the RESPONSE STAGE and DISCRIMINATION STAGE. For both stages, the probability of detection (P_d) and the false alarms are reported as receiver-operating characteristic (ROC) curves. False alarms are divided into those anomalies that correspond to emplaced clutter items, measuring the probability of false positive (P_{fp}), and those that do not correspond to any known item, termed background alarms. - b. The RESPONSE STAGE scoring evaluates the ability of the system to detect emplaced targets without regard to ability to discriminate ordnance from other anomalies. For the blind grid RESPONSE STAGE, the demonstrator provides the
scoring committee with a target response from each and every grid square along with a noise level below which target responses are deemed insufficient to warrant further investigation. This list is generated with minimal processing and, since a value is provided for every grid square, will include signals both above and below the system noise level. - c. The DISCRIMINATION STAGE evaluates the demonstrator's ability to correctly identify ordnance as such and to reject clutter. For the blind grid DISCRIMINATION STAGE, the demonstrator provides the scoring committee with the output of the algorithms applied in the discrimination-stage processing for each grid square. The values in this list are prioritized based on the demonstrator's determination that a grid square is likely to contain ordnance. Thus, higher output values are indicative of higher confidence that an ordnance item is present at the specified location. For digital signal processing, priority ranking is based on algorithm output. For other discrimination approaches, priority ranking is based on human (subjective) judgment. The demonstrator also specifies the threshold in the prioritized ranking that provides optimum performance, (i.e. that is expected to retain all detected ordnance and rejects the maximum amount of clutter). - d. The demonstrator is also scored on EFFICIENCY and REJECTION RATIO, which measures the effectiveness of the discrimination stage processing. The goal of discrimination is to retain the greatest number of ordnance detections from the anomaly list, while rejecting the maximum number of anomalies arising from non-ordnance items. EFFICIENCY measures the fraction of detected ordnance retained after discrimination, while the REJECTION RATIO measures the fraction of false alarms rejected. Both measures are defined relative to performance at the demonstrator-supplied level below which all responses are considered noise, i.e., the maximum ordnance detectable by the sensor and its accompanying false positive rate or background alarm rate. - e. Based on configuration of the ground truth at the standardized sites and the defined scoring methodology, there exists the possibility of having anomalies within overlapping halos and/or multiple anomalies within halos. In these cases, the following scoring logic is implemented: - (1) In situations where multiple anomalies exist within a single R_{halo} , the anomaly with the strongest response or highest ranking will be assigned to that particular ground truth item. - (2) For overlapping R_{halo} situations, ordnance has precedence over clutter. The anomaly with the strongest response or highest ranking that is closest to the center of a particular ground truth item gets assigned to that item. Remaining anomalies are retained until all matching is complete. - (3) Anomalies located within any R_{halo} that do not get associated with a particular ground truth item are thrown out and are not considered in the analysis. - f. All scoring factors are generated utilizing the Standardized UXO Probability and Plot Program, version 3.1.1. # 1.2.2 **Scoring Factors** Factors to be measured and evaluated as part of this demonstration include: - a. Response Stage ROC curves: - (1) Probability of Detection (P_d res). - (2) Probability of False Positive (P_{fp}^{res}) . - (3) Background Alarm Rate (BAR^{res}) or Probability of Background Alarm (P_{BA}^{res}). - b. Discrimination Stage ROC curves: - (1) Probability of Detection (P_d^{disc}). - (2) Probability of False Positive (P_{fp} disc). - (3) Background Alarm Rate (BAR^{disc}) or Probability of Background Alarm (P_{BA}^{disc}). - c. Metrics: - (1) Efficiency (E). - (2) False Positive Rejection Rate (R_{fp}) . - (3) Background Alarm Rejection Rate (R_{BA}). - d. Other: - (1) Probability of Detection by Size and Depth. - (2) Classification by type (i.e., 20-, 40-, 105-mm, etc.). - (3) Location accuracy. - (4) Equipment setup, calibration time and corresponding man-hour requirements. - (5) Survey time and corresponding man-hour requirements. - (6) Reacquisition/resurvey time and man-hour requirements (if any). - (7) Downtime due to system malfunctions and maintenance requirements. #### 1.3 STANDARD AND NONSTANDARD INERT ORDNANCE TARGETS The standard and nonstandard ordnance items emplaced in the test areas are listed in Table 1. Standardized targets are members of a set of specific ordnance items that have identical properties to all other items in the set (caliber, configuration, size, weight, aspect ratio, material, filler, magnetic remanence, and nomenclature). Nonstandard targets are inert ordnance items having properties that differ from those in the set of standardized targets. TABLE 1. INERT ORDNANCE TARGETS | Standard Type | Nonstandard (NS) | |------------------------------|-------------------------| | 20-mm Projectile M55 | 20-mm Projectile M55 | | | 20-mm Projectile M97 | | 40-mm Grenades M385 | 40-mm Grenades M385 | | 40-mm Projectile MKII Bodies | 40-mm Projectile M813 | | BDU-28 Submunition | | | BLU-26 Submunition | | | M42 Submunition | | | 57-mm Projectile APC M86 | | | 60-mm Mortar M49A3 | 60-mm Mortar (JPG) | | | 60-mm Mortar M49 | | 2.75-inch Rocket M230 | 2.75-inch Rocket M230 | | | 2.75-inch Rocket XM229 | | MK 118 ROCKEYE | | | 81-mm Mortar M374 | 81-mm Mortar (JPG) | | | 81-mm Mortar M374 | | 105-mm HEAT Rounds M456 | | | 105-mm Projectile M60 | 105-mm Projectile M60 | | 155-mm Projectile M483A1 | 155-mm Projectile M483A | | | 500-lb Bomb | JPG = Jefferson Proving Ground HEAT = high-explosive antitank # **SECTION 2. DEMONSTRATION** #### 2.1 DEMONSTRATOR INFORMATION # 2.1.1 <u>Demonstrator Point of Contact (POC) and Address</u> U.S. Army Corps of Engineers Engineering Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199 # 2.1.2 System Description (provided by demonstrator) The GEM-3 system is able to collect multiple channels of complex frequency domain electromagnetic interference (EMI) data over a wide range of audio frequencies (30 Hz to 48 kHz). The system is a wheeled pushcart with a 96-cm sensor head, a mounted electronics console, a user interface, and a real-time kinematic (RTK) Global Positioning System (GPS) (fig. 1). The sensor head consists of three coils. The primary transmitter coil is the outer coil in the sensor head. The receiver coil is the inner coil in the sensor head. The bucking transmitter coil is the middle coil in the sensor head. The current in the bucking coil flows in the opposite direction of the current in the primary transmitter coil. This suppresses the dipole moment on the receiver coil that is directly from the primary transmitter coil. The electronics console contains the multifrequency current waveform generator, the analog-to-digital converter receiver electronics, the digital signal processor, and the power management module. The user interface utilizes a personal digital assistant (PDA). The PDA is used for data logging and allows for real-time control of the system. The PDA also allows for real-time display of the data collected. The RTK GPS will require a base station to be set up at a suitable reference point for radio communication with the mobile unit on the GEM-3 system. The GEM-3 system's acquisition of multifrequency data allows for performing what Geophex Ltd., the developer of the system, calls electromagnetic induction spectroscopy (EMIS) on buried objects. EMIS provides a method to discriminate UXO targets from natural and man-made clutter objects by means of their unique, complex (in-phase and quadrature) frequency responses. Figure 1. Demonstrator's system, GEM-3 pushcart. # 2.1.3 <u>Data Processing Description (provided by demonstrator)</u> The GEM-3 data acquired at the test site will be processed using a combination of ERDC-developed programs and Geosoft's Oasis Montaj. First, basic data corrections such as background subtraction and time-synchronization between the sensor data and GPS data will be performed. The raw data, after these basic corrections, will be submitted in Geosoft XYZ format. Two Response Stage submissions will be made within 30 days. One will be based on a threshold applied to the total magnitude of the sensor inphase and quadrature response for all frequencies. The second will be based on interactive histogram analysis of the data. Data from each of these detection schemes will be used by the target discrimination algorithm to generate separate Discrimination Stage submissions. The discrimination algorithm compares sensor data collected near each detected anomaly with calibration data acquired over the target types of interest at the beginning of the data collection. One of ERDC's primary objectives for this data acquisition is to obtain high quality data to further our modeling and analysis research. Therefore, ERDC plans to make further data submissions using other detection and discrimination algorithms on this same dataset, alone and in combination with data from other sensors. #### 2.1.4 <u>Data Submission Format</u> Data were submitted for scoring in accordance with data submission protocols outlined in the Standardized UXO Technology Demonstration Site Handbook. These submitted data are not included in this report in order to protect ground truth information. # 2.1.5 <u>Demonstrator Quality Assurance (QA) and Quality Control (QC) (provided by demonstrator)</u> The operators will perform three levels of quality control (QC) checks: the first day of the project, the beginning of the day, and whenever there is an equipment change (i.e. batteries, data dump, etc.). On the first day of the project, the operators will lay out a 10-meter long line oriented North to South with a ferrite bar at the center. This line will be well marked and used each time we test the instrument and positioning are tested. The operators will test for instrument response over the ferrite bar, as well as conduct a position check and a latency
check. The operators will walk the line slowly in two directions and then back the pushcart up until it is centered on the ferrite bar. This will set the location of the ferrite bar as well as the instrument response, which will be referenced every time the operators check the equipment. Each morning the operators will perform functional equipment checks. The operators will visually inspect all equipment for damage. They will then power up the equipment. The operators will perform static and instrument response tests to ensure that the data is stable when the instrument is in a static position over a marked location. These tests will be performed after the instrument has had sufficient time to warm up. Quality assurance (QA) will be the responsibility of the project lead; he will ensure that test data will be inspected and recorded each day using a known target (e.g. ferrite bar) with the GEM-3 sensors, and using a reference position with the RTK GPS. Geo-referenced data sets will be inspected at the end of the day for GEM-3 data quality and navigation integrity (reasonableness criteria). Data analysis will be performed each day. This analysis will include inspection of the data for inconsistencies (bad data and errors) and to verify RTK GPS data show good coverage and limited dropouts. If the data show the sensor or electronics are not taking acceptable data or the RTK GPS dropouts are too numerous/large for data analysis or good coverage, that section will be flagged for a resurvey. # 2.1.6 Additional Records The following record(s) by this vendor can be accessed via the Internet as MicroSoft Word documents at www.uxotestsites.org. The counterparts to this report are the Blind Grid, Scoring Record No. 134, and the Open Field, Scoring Record No. 135. #### 2.2 YPG SITE INFORMATION #### 2.2.1 Location YPG is located adjacent to the Colorado River in the Sonoran Desert. The UXO Standardized Test Site is located south of Pole Line Road and east of the Countermine Testing and Training Range. The Open Field range, Calibration Grid, Blind Grid, Mogul area, and Desert Extreme area comprise the 350 by 500-meter general test site area. The open field site is the largest of the test sites and measures approximately 200 by 350 meters. To the east of the open field range are the calibration and blind test grids that measure 30 by 40 meters and 40 by 40 meters, respectively. South of the Open Field is the 135- by 80-meter Mogul area consisting of a sequence of man-made depressions. The Desert Extreme area is located southeast of the open field site and has dimensions of 50 by 100 meters. The Desert Extreme area, covered with desert-type vegetation, is used to test the performance of different sensor platforms in a more severe desert conditions/environment. # **2.2.2 Soil Type** Soil samples were collected at the YPG UXO Standardized Test Site by ERDC to characterize the shallow subsurface (< 3 m). Both surface grab samples and continuous soil borings were acquired. The soils were subjected to several laboratory analyses, including sieve/hydrometer, water content, magnetic susceptibility, dielectric permittivity, X-ray diffraction, and visual description. There are two soil complexes present within the site, Riverbend-Carrizo and Cristobal-Gunsight. The Riverbend-Carrizo complex is comprised of mixed stream alluvium, whereas the Cristobal-Gunsight complex is derived from fan alluvium. The Cristobal-Gunsight complex covers the majority of the site. Most of the soil samples were classified as either a sandy loam or loamy sand, with most samples containing gravel-size particles. All samples had a measured water content less than 7 percent, except for two that contained 11-percent moisture. The majority of soil samples had water content between 1 to 2 percent. Samples containing more than 3 percent were generally deeper than 1 meter. An X-ray diffraction analysis on four soil samples indicated a basic mineralogy of quartz, calcite, mica, feldspar, magnetite, and some clay. The presence of magnetite imparted a moderate magnetic susceptibility, with volume susceptibilities generally greater than 100 by 10-5 SI. For more details concerning the soil properties at the YPG test site, go to www.uxotestsites.org on the web to view the entire soils description report. # 2.2.3 Test Areas A description of the test site areas at YPG is included in Table 2. TABLE 2. TEST SITE AREAS | Area | Description | | | | | |------------------|--|--|--|--|--| | Calibration Grid | Contains the 15 standard ordnance items buried in six positions at | | | | | | | various angles and depths to allow demonstrator equipment | | | | | | | calibration. | | | | | | Blind Grid | Contains 400 grid cells in a 0.16-hectare (0.39-acre) site. The center | | | | | | | of each grid cell contains ordnance, clutter, or nothing. | | | | | | Open Field | A 4-hectare (10-acre) site containing open areas, dips, ruts, and | | | | | | | obstructions, including vegetation. | | | | | | Mogul | A 2.64 acre area consisting of two areas (the rectangular or driving | | | | | | | portion of the course and the triangular section with more difficult, | | | | | | | non-drivable terrain). A series of craters (as deep as 0.91m) and | | | | | | | trenches (as deep as 0.91m) encompass this section. | | | | | # **SECTION 3. FIELD DATA** # 3.1 DATE OF FIELD ACTIVITIES (21 May 2003) # 3.2 AREAS TESTED/NUMBER OF HOURS Areas tested and total number of hours operated at each site are summarized in Table 3. TABLE 3. AREAS TESTED AND NUMBER OF HOURS | Area | Number of Hours | |-------------------|-----------------| | Calibration Lanes | 5.25 | | Mogul | 5.55 | #### 3.3 TEST CONDITIONS # 3.3.1 Weather Conditions A YPG weather station located approximately one mile west of the test site was used to record average temperature and precipitation on a half hour basis for each day of operation. The temperatures listed in Table 4 represent the average temperature during field operations from 0700 to 1700 hours while precipitation data represents a daily total amount of rainfall. Hourly weather logs used to generate this summary are provided in Appendix B. TABLE 4. TEMPERATURE/PRECIPITATION DATA SUMMARY | Date, 2003 | Average Temperature, °F | Total Daily Precipitation, in. | | |------------|-------------------------|--------------------------------|--| | 21 May | N/A | N/A | | # 3.3.2 Field Conditions The field was dry and the weather was warm throughout the ERDC survey. #### 3.3.3 Soil Moisture Three soil probes were placed at various locations within the site to capture soil moisture data: Blind Grid, Calibration, Desert Extreme, Open Field areas. Measurements were collected in percent moisture and were taken twice daily (morning and afternoon) from five different soil depths (1 to 6 in., 6 to 12 in., 12 to 24 in., 24 to 36 in., and 36 to 48 in.) from each probe. Soil moisture logs are included in Appendix C. #### 3.4 FIELD ACTIVITIES #### 3.4.1 <u>Setup/Mobilization</u> These activities included initial mobilization and daily equipment preparation and break down. A five-person crew took 6 hours and 30 minutes to perform the initial setup and mobilization. There was 1-hour and 20 minutes of daily equipment preparation and end of the day equipment break down lasted 15 minutes. #### 3.4.2 Calibration ERDC spent a total of 5 hours and 15 minutes in the calibration lanes, of which 1-hour and 50 minutes was spent collecting data. An additional 7 minutes of calibration took place in the Mogul area. #### 3.4.3 **Downtime Occasions** Occasions of downtime are grouped into five categories: equipment/data checks or equipment maintenance, equipment failure and repair, weather, Demonstration Site issues, or breaks/lunch. All downtime is included for the purposes of calculating labor costs (section 5) except for downtime due to Demonstration Site issues. Demonstration Site issues, while noted in the Daily Log, are considered non-chargeable downtime for the purposes of calculating labor costs and are not discussed. Breaks and lunches are discussed in this section and billed to the total Site Survey area. - **3.4.3.1** Equipment/data checks, maintenance. Equipment data checks and maintenance activities accounted for 53 minutes of site usage time. These activities included changing out batteries and routine data checks to ensure the data was being properly recorded/collected. ERDC spent no time for breaks and lunches. - **3.4.3.2** Equipment failure or repair. 12 minutes was needed to resolve equipment failures that occurred while surveying the Mogul. A GPS mount broke. It was repaired and no further action was needed. - **3.4.3.3 Weather.** No weather delays occurred during the survey. #### 3.4.4 <u>Data Collection</u> ERDC spent a total time of 5 hours and 33 minutes in the Mogul area, 2 hours and 53 minutes of which was spent collecting data. #### 3.4.5 Demobilization The ERDC survey crew went on to conducted a full demonstration of the site. Therefore, demobilization did not occur until 22 May 2003. On that day, it took the crew 46 minutes to break down and pack up their equipment. # 3.5 PROCESSING TIME ERDC submitted the raw data from the demonstration activities on the last day of the demonstration, as required. The scoring submittal data was also provided within the required 30-day timeframe. # 3.6 DEMONSTRATOR'S FIELD SURVEYING METHOD ERDC collected data in a linear fashion and in a north to south direction. # 3.7 SUMMARY OF DAILY LOGS Daily logs capture all field activities during this demonstration and are located in Appendix D. Activities pertinent to this specific demonstration are indicated in highlighted text. # **SECTION 4. TECHNICAL PERFORMANCE RESULTS** # 4.1 ROC CURVES USING ALL ORDNANCE CATEGORIES Figure 2 shows the probability of detection for the
response stage $(P_d^{\, res})$ and the discrimination stage $(P_d^{\, disc})$ versus their respective probability of false positive. Figure 3 shows both probabilities plotted against their respective background alarm rate. Both figures use horizontal lines to illustrate the performance of the demonstrator at two demonstrator-specified points: at the system noise level for the response stage, representing the point below which targets are not considered detectable, and at the demonstrator's recommended threshold level for the discrimination stage, defining the subset of targets the demonstrator would recommend digging based on discrimination. Note that all points have been rounded to protect the ground truth. Figure 2. GEM-3/pushcart mogul probability of detection for response and discrimination stages versus their respective probability of false positive over all ordnance categories combined. Figure 3. GEM-3/pushcart mogul probability of detection for response and discrimination stages versus their respective background alarm rate over all ordnance categories combined. #### 4.2 ROC CURVES USING ORDNANCE LARGER THAN 20 MM Figure 4 shows the probability of detection for the response stage $(P_d^{\, res})$ and the discrimination stage $(P_d^{\, disc})$ versus their respective probability of false positive when only targets larger than 20 mm are scored. Figure 5 shows both probabilities plotted against their respective background alarm rate. Both figures use horizontal lines to illustrate the performance of the demonstrator at two demonstrator-specified points: at the system noise level for the response stage, representing the point below which targets are not considered detectable, and at the demonstrator's recommended threshold level for the discrimination stage, defining the subset of targets the demonstrator would recommend digging based on discrimination. Note that all points have been rounded to protect the ground truth. Figure 4. GEM-3/pushcart mogul probability of detection for response and discrimination stages versus their respective probability of false positive for all ordnance larger than 20 mm. Figure 5. GEM-3/pushcart mogul probability of detection for response and discrimination stages versus their respective background alarm rate for all ordnance larger than 20 mm. #### 4.3 PERFORMANCE SUMMARIES Results for the Mogul test broken out by size, depth and nonstandard ordnance are presented in Table 5 (for cost results, see section 5). Results by size and depth include both standard and nonstandard ordnance. The results by size show how well the demonstrator did at detecting/discriminating ordnance of a certain caliber range (see app A for size definitions). The results are relative to the number of ordnance items emplaced. The RESPONSE STAGE results are derived from the list of anomalies above the demonstrator-provided noise level. The results for the DISCRIMINATION STAGE are derived from the demonstrator's recommended threshold for optimizing UXO field cleanup by minimizing false digs and maximizing ordnance recovery. The lower 90 percent confidence limit on probability of detection and P_{fp} was calculated assuming that the number of detections and false positives are binomially distributed random variables. All results in Table 5 have been rounded to protect the ground truth. However, lower confidence limits were calculated using actual results. TABLE 5. SUMMARY OF MOGUL RESULTS FOR GEM-3/PUSHCART | | By Size | | | By Depth, m | | | | | | |--------------------------------|---------|----------|---------------|-------------|--------|-------|-------|-----------|------| | Metric | Overall | Standard | Nonstandard | Small | Medium | Large | < 0.3 | 0.3 to <1 | >= 1 | | | | | RESPONSE ST | ΓAGE | | | | | | | P_{d} | 0.30 | 0.30 | 0.35 | 0.20 | 0.35 | 0.65 | 0.35 | 0.35 | 0.15 | | P _d Low 90% Conf | 0.27 | 0.23 | 0.26 | 0.15 | 0.25 | 0.46 | 0.26 | 0.23 | 0.01 | | P _d Upper 90% Conf | 0.38 | 0.38 | 0.46 | 0.30 | 0.47 | 0.80 | 0.41 | 0.45 | 0.45 | | P_{fp} | 0.35 | - | - | - | - | - | 0.35 | 0.25 | 0.00 | | P _{fp} Low 90% Conf | 0.29 | - | - | - | - | - | 0.31 | 0.17 | 0.00 | | P _{fp} Upper 90% Conf | 0.38 | - | - | - | - | - | 0.41 | 0.38 | 0.68 | | BAR | 0.05 | - | - | - | - | - | - | - | - | | | | | DISCRIMINATIO | N STAG | E | | | | | | P_d | 0.30 | 0.25 | 0.35 | 0.15 | 0.35 | 0.55 | 0.30 | 0.30 | 0.15 | | P _d Low 90% Conf | 0.23 | 0.18 | 0.24 | 0.11 | 0.25 | 0.35 | 0.22 | 0.18 | 0.01 | | P _d Upper 90% Conf | 0.34 | 0.32 | 0.44 | 0.25 | 0.47 | 0.70 | 0.37 | 0.40 | 0.45 | | P_{fp} | 0.35 | - | - | 1 | 1 | 1 | 0.35 | 0.25 | 0.00 | | P _{fp} Low 90% Conf | 0.28 | - | - | - | - | - | 0.30 | 0.15 | 0.00 | | P _{fp} Upper 90% Conf | 0.37 | - | - | - | - | - | 0.41 | 0.35 | 0.68 | | BAR | 0.05 | - | - | - | - | - | 1 | - | - | Response Stage Noise Level: 50.00 Recommended Discrimination Stage Threshold: 70.00 Note: The recommended discrimination stage threshold values are provided by the demonstrator. #### 4.4 EFFICIENCY, REJECTION RATES, AND TYPE CLASSIFICATION Efficiency and rejection rates are calculated to quantify the discrimination ability at specific points of interest on the ROC curve: (1) at the point where no decrease in P_d is suffered (i.e., the efficiency is by definition equal to one) and (2) at the operator selected threshold. These values are reported in Table 6. TABLE 6. EFFICIENCY AND REJECTION RATES | | Efficiency (E) | False Positive
Rejection Rate | Background Alarm
Rejection Rate | | |--------------------------------|----------------|----------------------------------|------------------------------------|--| | At Operating Point | 0.87 | 0.03 | 0.18 | | | With No Loss of P _d | 1.00 | 0.00 | 0.00 | | At the demonstrator's recommended setting, the ordnance items that were detected and correctly discriminated were further scored on whether their correct type could be identified (table 7). Correct type examples include "20-mm projectile, 105-mm HEAT Projectile, and 2.75-inch Rocket". A list of the standard type declaration required for each ordnance item was provided to demonstrators prior to testing. For example, the standard type for the three example items are 20mmP, 105H, and 2.75in, respectively. TABLE 7. CORRECT TYPE CLASSIFICATION OF TARGETS CORRECTLY DISCRIMINATED AS UXO | Size | Percentage Correct | |---------|--------------------| | Small | N/A | | Medium | N/A | | Large | N/A | | Overall | N/A | Note: The demonstrator did not attempt to provide type classification. #### 4.5 LOCATION ACCURACY The mean location error and standard deviations appear in Table 8. These calculations are based on average missed depth for ordnance correctly identified in the discrimination stage. Depths are measured from the closest point of the ordnance to the surface. For the Blind Grid, only depth errors are calculated, since (X, Y) positions are known to be the centers of each grid square. TABLE 8. MEAN LOCATION ERROR AND STANDARD DEVIATION (M) | | Mean | Standard Deviation | |----------|-------|---------------------------| | Northing | -0.05 | 0.24 | | Easting | 0.00 | 0.19 | | Depth | 0.05 | 0.28 | # **SECTION 5. ON-SITE LABOR COSTS** A standardized estimate for labor costs associated with this effort was calculated as follows: the first person at the test site was designated "supervisor", the second person was designated "data analyst", and the third and following personnel were considered "field support". Standardized hourly labor rates were charged by title: supervisor at \$95.00/hour, data analyst at \$57.00/hour, and field support at \$28.50/hour. Government representatives monitored on-site activity. All on-site activities were grouped into one of ten categories: initial setup/mobilization, daily setup/stop, calibration, collecting data, downtime due to break/lunch, downtime due to equipment failure, downtime due to equipment/data checks or maintenance, downtime due to weather, downtime due to demonstration site issue, or demobilization. See Appendix D for the daily activity log. See section 3.4 for a summary of field activities. The standardized cost estimate associated with the labor needed to perform the field activities is presented in Table 9. Note that calibration time includes time spent in the Calibration Lanes as well as field calibrations. "Site survey time" includes daily setup/stop time, collecting data, breaks/lunch, downtime due to equipment/data checks or maintenance, downtime due to failure, and downtime due to weather. TABLE 9. ON-SITE LABOR COSTS | | No. People | Hourly Wage | Hours | Cost | |---------------|------------|---------------|-------|------------| | | · | Initial Setup | | | | Supervisor | 1 | \$95.00 | 6.5 | \$617.50 | | Data Analyst | 1 | 57.00 | 6.5 | 370.50 | | Field Support | 2 | 28.50 | 6.5 | 370.50 | | SubTotal | | | | \$1,358.50 | | | | Calibration | | | | Supervisor | 1 | \$95.00 | 5.37 | \$510.15 | | Data Analyst | 1 | 57.00 | 5.37 | 306.09 | | Field Support | 3 | 28.50 | 5.37 | 459.14 | | SubTotal | | | | \$1,275.38 | | | | Site Survey | | | | Supervisor | 1 | \$95.00 | 5.55 | \$527.25 | | Data Analyst | 1 | 57.00 | 5.55 | 299.25 | | Field Support | 1 | 28.50 | 5.55 | 158.18 | | SubTotal | | | | \$984.68 | See notes at end of table. TABLE 9 (CONT'D) | | No. People | Hourly Wage | Hours | Cost | | | | |----------------|------------|-------------|-------|------------|--|--|--| | Demobilization | | | | | | | | | Supervisor | 1 | \$95.00 | 0.77 | \$73.15 | | | | | Data Analyst | 1 | 57.00 | 0.77 | 43.89 | | | | | Field Support | 1 | 28.50 | 0.77 | 21.95 | | | | | Subtotal | | | | \$138.99 | | | | | Total | | | | \$3,757.55 | | | | Notes: Calibration time includes time spent in the Calibration Lanes as well as calibration before each data run. Site Survey time includes daily setup/stop time, collecting data, breaks/lunch, downtime due to system maintenance, failure, and weather. # SECTION 6. COMPARISON OF RESULTS TO OPEN
FIELD DEMONSTRATION #### 6.1 SUMMARY OF RESULTS FROM OPEN FIELD DEMONSTRATION Table 10 shows the results from Open Field survey conducted prior to surveying the Moguls during the same site visit in May of 2003. For more details on the Open Field survey results reference section 2.1.6. TABLE 10. SUMMARY OF OPEN FIELD RESULTS FOR THE GEM-3/PUSHCART | | | | | By Size | | | By Depth, m | | | |--------------------------------|---------|----------|-------------|---------|--------|-------|-------------|-----------|------| | Metric | Overall | Standard | Nonstandard | Small | Medium | Large | < 0.3 | 0.3 to <1 | >= 1 | | RESPONSE STAGE | | | | | | | | | | | P_d | 0.45 | 0.45 | 0.55 | 0.35 | 0.60 | 0.65 | 0.50 | 0.50 | 0.05 | | P _d Low 90% Conf | 0.44 | 0.39 | 0.48 | 0.31 | 0.52 | 0.60 | 0.46 | 0.46 | 0.03 | | P _d Upper 90% Conf | 0.50 | 0.47 | 0.57 | 0.39 | 0.63 | 0.73 | 0.54 | 0.56 | 0.16 | | P_{fp} | 0.50 | - | - | - | - | - | 0.55 | 0.50 | N/A | | P _{fp} Low 90% Conf | 0.50 | - | - | - | - | - | 0.51 | 0.47 | N/A | | P _{fp} Upper 90% Conf | 0.54 | - | - | - | - | - | 0.55 | 0.55 | 0.21 | | BAR | 0.15 | - | - | - | - | - | - | - | - | | DISCRIMINATION STAGE | | | | | | | | | | | P_d | 0.45 | 0.40 | 0.50 | 0.30 | 0.55 | 0.65 | 0.45 | 0.50 | 0.05 | | P _d Low 90% Conf | 0.41 | 0.37 | 0.44 | 0.27 | 0.50 | 0.57 | 0.43 | 0.44 | 0.03 | | P _d Upper 90% Conf | 0.47 | 0.45 | 0.53 | 0.35 | 0.61 | 0.71 | 0.50 | 0.54 | 0.16 | | P_{fp} | 0.50 | - | - | - | - | - | 0.50 | 0.45 | N/A | | P _{fp} Low 90% Conf | 0.47 | - | = | - | - | - | 0.48 | 0.42 | N/A | | P _{fp} Upper 90% Conf | 0.50 | - | - | - | - | - | 0.52 | 0.49 | 0.21 | | BAR | 0.05 | - | - | - | - | - | - | - | - | # 6.2 COMPARISON OF ROC CURVES USING ALL ORDNANCE CATEGORIES Figure 6 shows P_d^{res} versus the respective P_{fp} over all ordnance categories. Figure 7 shows P_d^{disc} versus their respective P_{fp} over all ordnance categories. Figure 7 uses horizontal lines to illustrate the performance of the demonstrator at the recommended discrimination threshold levels, defining the subset of targets the demonstrator would recommend digging based on discrimination. Figure 6. GEM-3/pushcart P_d^{res} stages versus the respective P_{fp} over all ordnance categories combined. Figure 7. GEM-3/pushcart P_d^{disc} versus the respective P_{fp} over all ordnance categories combined. # 6.3 COMPARISON OF ROC CURVES USING ORDNANCE LARGER THAN 20 MM Figure 8 shows the P_d^{res} versus the respective probability of P_{fp} over ordnance larger than 20 mm. Figure 9 shows P_d^{disc} versus the respective P_{fp} over ordnance larger than 20 mm. Figure 9 uses horizontal lines to illustrate the performance of the demonstrator at the recommended discrimination threshold levels, defining the subset of targets the demonstrator would recommend digging based on discrimination. Figure 8. GEM-3/pushcart P_d^{res} versus the respective P_{fp} for ordnance larger than 20 mm. Figure 9. GEM-3/pushcart P_d^{disc} versus the respective P_{fp} for ordnance larger than 20 mm. #### 6.4 STATISTICAL COMPARISONS Statistical Chi-square significance tests were used to compare results between the Open Field and Mogul Area scenarios. The intent of the comparison is to determine if the feature introduced in each scenario has a degrading effect on the performance of the sensor system. However, any modifications in the UXO sensor system during the test, like changes in the processing or changes in the selection of the operating threshold, will also contribute to performance differences. The Chi-square test for comparison between ratios was used at a significance level of 0.05 to compare Open Field to Mogul Area with regard to P_d^{res} , P_d^{disc} , P_{fp}^{res} and P_{fp}^{disc} , Efficiency and Rejection Rate. These results are presented in Table 11. A detailed explanation and example of the Chi-square application is located in Appendix A. TABLE 11. CHI-SQUARE RESULTS – OPEN FIELD VERSUS MOGUL | Metric | Small | Medium | Large | Overall | | |---------------------------------|-----------------|-----------------|-----------------|-----------------|--| | P_d^{res} | Significant | Significant | Not Significant | Significant | | | P_d^{disc} | Significant | Significant | Not Significant | Significant | | | P_{fp}^{res} | Not Significant | Not Significant | Not Significant | Not Significant | | | P _{fp} ^{disc} | - | - | - | Significant | | | Efficiency | - | - | - | Significant | | | Rejection rate | - | - | - | Not Significant | | # **SECTION 7. APPENDIXES** #### APPENDIX A. TERMS AND DEFINITIONS #### **GENERAL DEFINITIONS** Anomaly: Location of a system response deemed to warrant further investigation by the demonstrator for consideration as an emplaced ordnance item. Detection: An anomaly location that is within R_{halo} of an emplaced ordnance item. Emplaced Ordnance: An ordnance item buried by the government at a specified location in the test site. Emplaced Clutter: A clutter item (i.e., non-ordnance item) buried by the government at a specified location in the test site. R_{halo} : A pre-determined radius about the periphery of an emplaced item (clutter or ordnance) within which a location identified by the demonstrator as being of interest is considered to be a response from that item. If multiple declarations lie within R_{halo} of any item (clutter or ordnance), the declaration with the highest signal output within the R_{halo} will be utilized. For the purpose of this program, a circular halo 0.5 meters in radius will be placed around the center of the object for all clutter and ordnance items less than 0.6 meters in length. When ordnance items are longer than 0.6 meters, the halo becomes an ellipse where the minor axis remains 1 meter and the major axis is equal to the length of the ordnance plus 1 meter. Small Ordnance: Caliber of ordnance less than or equal to 40 mm (includes 20-mm projectile, 40-mm projectile, submunitions BLU-26, BLU-63, and M42). Medium Ordnance: Caliber of ordnance greater than 40 mm and less than or equal to 81 mm (includes 57-mm projectile, 60-mm mortar, 2.75 in. Rocket, MK118 Rockeye, 81-mm mortar). Large Ordnance: Caliber of ordnance greater than 81 mm (includes 105-mm HEAT, 105-mm projectile, 155-mm projectile, 500-pound bomb). Shallow: Items buried less than 0.3 meter below ground surface. Medium: Items buried greater than or equal to 0.3 meter and less than 1 meter below ground surface. Deep: Items buried greater than or equal to 1 meter below ground surface. Response Stage Noise Level: The level that represents the point below which anomalies are not considered detectable. Demonstrators are required to provide the recommended noise level for the Blind Grid test area. Discrimination Stage Threshold: The demonstrator selected threshold level that they believe provides optimum performance of the system by retaining all detectable ordnance and rejecting the maximum amount of clutter. This level defines the subset of anomalies the demonstrator would recommend digging based on discrimination. Binomially Distributed Random Variable: A random variable of the type which has only two possible outcomes, say success and failure, is repeated for n independent trials with the probability p of success and the probability 1-p of failure being the same for each trial. The number of successes x observed in the n trials is an estimate of p and is considered to be a binomially distributed random variable. #### RESPONSE AND DISCRIMINATION STAGE DATA The scoring of the demonstrator's performance is conducted in two stages. These two stages are termed the RESPONSE STAGE and DISCRIMINATION STAGE. For both stages, the probability of detection (P_d) and the false alarms are reported as receiver operating characteristic (ROC) curves. False alarms are divided into those anomalies that correspond to emplaced clutter items, measuring the probability of false positive (P_{fp}) and those that do not correspond to any known item, termed background alarms. The RESPONSE STAGE scoring evaluates the ability of the system to detect emplaced targets without regard to ability to discriminate ordnance from other anomalies. For the RESPONSE STAGE, the demonstrator provides the scoring committee with the location and signal strength of all anomalies that the demonstrator has deemed sufficient to warrant further investigation and/or processing as potential emplaced ordnance items. This list is generated with minimal processing (e.g., this list will include all signals above the system noise threshold). As such, it represents the most inclusive list of anomalies. The DISCRIMINATION STAGE evaluates the demonstrator's ability to correctly identify ordnance as such, and to reject clutter. For the same locations as in the RESPONSE STAGE anomaly list, the DISCRIMINATION STAGE list contains the output of the algorithms applied in the discrimination-stage processing. This list is prioritized based on the demonstrator's determination that an anomaly location is likely to contain ordnance. Thus, higher output values are indicative of higher confidence that an ordnance item is present at the specified location. For electronic signal processing, priority ranking is based on algorithm output. For other systems, priority ranking is based on human judgment. The demonstrator also selects the threshold that the demonstrator believes will provide "optimum" system performance, (i.e., that retains all the detected ordnance and rejects the maximum amount of clutter). Note: The two lists provided by the demonstrator contain identical numbers of potential target locations. They differ only in the priority ranking of the declarations. #### RESPONSE STAGE DEFINITIONS Response Stage Probability of Detection (P_d^{res}) : $P_d^{res} = (No. of response-stage detections)/(No. of emplaced ordnance in the test site).$ Response Stage False Positive (
fp^{res}): An anomaly location that is within R_{halo} of an emplaced clutter item. Response Stage Probability of False Positive (P_{fp}^{res}) : $P_{fp}^{res} = (No. of response-stage false positives)/(No. of emplaced clutter items).$ Response Stage Background Alarm (ba^{res}): An anomaly in a blind grid cell that contains neither emplaced ordnance nor an emplaced clutter item. An anomaly location in the open field or scenarios that is outside R_{halo} of any emplaced ordnance or emplaced clutter item. Response Stage Probability of Background Alarm (P_{ba}^{res}): Blind Grid only: $P_{ba}^{res} = (No. of response-stage background alarms)/(No. of empty grid locations).$ Response Stage Background Alarm Rate (BAR^{res}): Open Field only: BAR^{res} = (No. of response-stage background alarms)/(arbitrary constant). Note that the quantities P_d^{res} , P_{fp}^{res} , P_{ba}^{res} , and BAR^{res} are functions of t^{res} , the threshold applied to the response-stage signal strength. These quantities can therefore be written as $P_d^{res}(t^{res})$, $P_{fp}^{res}(t^{res})$, $P_{ba}^{res}(t^{res})$, and $BAR^{res}(t^{res})$. #### DISCRIMINATION STAGE DEFINITIONS Discrimination: The application of a signal processing algorithm or human judgment to response-stage data that discriminates ordnance from clutter. Discrimination should identify anomalies that the demonstrator has high confidence correspond to ordnance, as well as those that the demonstrator has high confidence correspond to nonordnance or background returns. The former should be ranked with highest priority and the latter with lowest. Discrimination Stage Probability of Detection (P_d^{disc}) : $P_d^{disc} = (No. of discrimination-stage detections)/(No. of emplaced ordnance in the test site).$ Discrimination Stage False Positive (fp^{disc}): An anomaly location that is within R_{halo} of an emplaced clutter item. Discrimination Stage Probability of False Positive (P_{fp}^{disc}): $P_{fp}^{disc} = (No. of discrimination stage false positives)/(No. of emplaced clutter items).$ Discrimination Stage Background Alarm (ba^{disc}): An anomaly in a blind grid cell that contains neither emplaced ordnance nor an emplaced clutter item. An anomaly location in the open field or scenarios that is outside R_{halo} of any emplaced ordnance or emplaced clutter item. Discrimination Stage Probability of Background Alarm (P_{ba}^{disc}): $P_{ba}^{disc} = (No. of discrimination-stage background alarms)/(No. of empty grid locations).$ Discrimination Stage Background Alarm Rate (BAR disc): BAR disc = (No. of discrimination-stage background alarms)/(arbitrary constant). Note that the quantities $P_d^{\,disc}$, $P_{fp}^{\,disc}$, $P_{ba}^{\,disc}$, and BAR^{disc} are functions of t^{disc} , the threshold applied to the discrimination-stage signal strength. These quantities can therefore be written as $P_d^{\,disc}(t^{disc})$, $P_{fp}^{\,disc}(t^{disc})$, $P_{ba}^{\,disc}(t^{disc})$, and $BAR^{\,disc}(t^{disc})$. #### RECEIVER-OPERATING CHARACERISTIC (ROC) CURVES ROC curves at both the response and discrimination stages can be constructed based on the above definitions. The ROC curves plot the relationship between P_d versus P_{fp} and P_d versus BAR or P_{ba} as the threshold applied to the signal strength is varied from its minimum (t_{min}) to its maximum (t_{max}) value. Figure A-1 shows how P_d versus P_{fp} and P_d versus BAR are combined into ROC curves. Note that the "res" and "disc" superscripts have been suppressed from all the variables for clarity. Figure A-1. ROC curves for open field testing. Each curve applies to both the response and discrimination stages. obtained in the Blind Grid test sites are true ROC curves. $^{^1}$ Strictly speaking, ROC curves plot the P_d versus P_{ba} over a pre-determined and fixed number of detection opportunities (some of the opportunities are located over ordnance and others are located over clutter or blank spots). In an open field scenario, each system suppresses its signal strength reports until some bare-minimum signal response is received by the system. Consequently, the open field ROC curves do not have information from low signal-output locations, and, furthermore, different contractors report their signals over a different set of locations on the ground. These ROC curves are thus not true to the strict definition of ROC curves as defined in textbooks on detection theory. Note, however, that the ROC curves #### METRICS TO CHARACTERIZE THE DISCRIMINATION STAGE The demonstrator is also scored on efficiency and rejection ratio, which measure the effectiveness of the discrimination stage processing. The goal of discrimination is to retain the greatest number of ordnance detections from the anomaly list, while rejecting the maximum number of anomalies arising from nonordnance items. The efficiency measures the amount of detected ordnance retained by the discrimination, while the rejection ratio measures the fraction of false alarms rejected. Both measures are defined relative to the entire response list, i.e., the maximum ordnance detectable by the sensor and its accompanying false positive rate or background alarm rate. Efficiency (E): $E = P_d^{disc}(t^{disc})/P_d^{res}(t_{min}^{res})$; Measures (at a threshold of interest), the degree to which the maximum theoretical detection performance of the sensor system (as determined by the response stage tmin) is preserved after application of discrimination techniques. Efficiency is a number between 0 and 1. An efficiency of 1 implies that all of the ordnance initially detected in the response stage was retained at the specified threshold in the discrimination stage, t^{disc} . Background Alarm Rejection Rate (R_{ba}): ``` \begin{split} &Blind~Grid:~R_{ba}=1\text{ - }[P_{ba}^{~disc}(t^{disc})/P_{ba}^{~res}(t_{min}^{~res})].\\ &Open~Field:~R_{ba}=1\text{ - }[BAR^{disc}(t^{disc})/BAR^{res}(t_{min}^{~res})]). \end{split} ``` Measures the degree to which the discrimination stage correctly rejects background alarms initially detected in the response stage. The rejection rate is a number between 0 and 1. A rejection rate of 1 implies that all background alarms initially detected in the response stage were rejected at the specified threshold in the discrimination stage. # CHI-SQUARE COMPARISON EXPLANATION: The Chi-square test for differences in probabilities (or 2 x 2 contingency table) is used to analyze two samples drawn from two different populations to see if both populations have the same or different proportions of elements in a certain category. More specifically, two random samples are drawn, one from each population, to test the null hypothesis that the probability of event A (some specified event) is the same for both populations (ref 3). A 2 x 2 contingency table is used in the Standardized UXO Technology Demonstration Site Program to determine if there is reason to believe that the proportion of ordnance correctly detected/discriminated by demonstrator X's system is significantly degraded by the more challenging terrain feature introduced. The test statistic of the 2 x 2 contingency table is the Chi-square distribution with one degree of freedom. Since an association between the more challenging terrain feature and relatively degraded performance is sought, a one-sided test is performed. A significance level of 0.05 is chosen which sets a critical decision limit of 2.71 from the Chi-square distribution with one degree of freedom. It is a critical decision limit because if the test statistic calculated from the data exceeds this value, the two proportions tested will be considered significantly different. If the test statistic calculated from the data is less than this value, the two proportions tested will be considered not significantly different. An exception must be applied when either a 0 or 100 percent success rate occurs in the sample data. The Chi-square test cannot be used in these instances. Instead, Fischer's test is used and the critical decision limit for one-sided tests is the chosen significance level, which in this case is 0.05. With Fischer's test, if the test statistic is less than the critical value, the proportions are considered to be significantly different. Standardized UXO Technology Demonstration Site examples, where blind grid results are compared to those from the open field and open field results are compared to those from one of the scenarios, follow. It should be noted that a significant result does not prove a cause and effect relationship exists between the two populations of interest; however, it does serve as a tool to indicate that one data set has experienced a degradation in system performance at a large enough level than can be accounted for merely by chance or random variation. Note also that a result that is not significant indicates that there is not enough evidence to declare that anything more than chance or random variation within the same population is at work between the two data sets being compared. Demonstrator X achieves the following overall results after surveying each of the three progressively more difficult areas using the same system (results indicate the number of ordnance detected divided by the number of ordnance emplaced): | Blind Grid | Open Field | Moguls | |----------------------------------|------------|-------------| | $P_d^{\text{res}} 100/100 = 1.0$ | 8/10 = .80 | 20/33 = .61 | | $P_d^{disc} 80/100 = 0.80$ | 6/10 = .60 | 8/33 = .24 | P_d^{res}: BLIND GRID versus OPEN FIELD. Using the example data above to compare probabilities of detection in the response stage, all 100 ordnance out of 100 emplaced ordnance items were detected in the blind grid while 8 ordnance out of 10 emplaced were detected in the open field. Fischer's test must be used since a 100 percent success rate occurs in the data. Fischer's test uses the four input values to
calculate a test statistic of 0.0075 that is compared against the critical value of 0.05. Since the test statistic is less than the critical value, the smaller response stage detection rate (0.80) is considered to be significantly less at the 0.05 level of significance. While a significant result does not prove a cause and effect relationship exists between the change in survey area and degradation in performance, it does indicate that the detection ability of demonstrator X's system seems to have been degraded in the open field relative to results from the blind grid using the same system. P_d disc: BLIND GRID versus OPEN FIELD. Using the example data above to compare probabilities of detection in the discrimination stage, 80 out of 100 emplaced ordnance items were correctly discriminated as ordnance in blind grid testing while 6 ordnance out of 10 emplaced were correctly discriminated as such in open field-testing. Those four values are used to calculate a test statistic of 1.12. Since the test statistic is less than the critical value of 2.71, the two discrimination stage detection rates are considered to be not significantly different at the 0.05 level of significance. P_d^{res} : OPEN FIELD versus MOGULS. Using the example data above to compare probabilities of detection in the response stage, 8 out of 10 and 20 out of 33 are used to calculate a test statistic of 0.56. Since the test statistic is less than the critical value of 2.71, the two response stage detection rates are considered to be not significantly different at the 0.05 level of significance. P_d^{disc} : OPEN FIELD versus MOGULS. Using the example data above to compare probabilities of detection in the discrimination stage, 6 out of 10 and 8 out of 33 are used to calculate a test statistic of 2.98. Since the test statistic is greater than the critical value of 2.71, the smaller discrimination stage detection rate is considered to be significantly less at the 0.05 level of significance. While a significant result does not prove a cause and effect relationship exists between the change in survey area and degradation in performance, it does indicate that the ability of demonstrator X to correctly discriminate seems to have been degraded by the mogul terrain relative to results from the flat open field using the same system. ## APPENDIX B. DAILY WEATHER LOGS TABLE B-1. WEATHER LOG | Weat | her Dat | ta from Yuma l | Provi | ng Ground | |----------|-------------|----------------|-------|----------------| | | | Average | | | | | Time, | Temperature, | RH, | Precipitation, | | Date | EDST | °F | % | in. | | 5/7/2003 | 01:00 | 66.1 | 33 | 0.00 | | 5/7/2003 | 02:00 | 64.8 | 35 | 0.00 | | 5/7/2003 | | 63.2 | 36 | 0.00 | | 5/7/2003 | 04:00 | 62.0 | 37 | 0.00 | | 5/7/2003 | 05:00 | 61.2 | 37 | 0.00 | | 5/7/2003 | 06:00 | 60.2 | 38 | 0.00 | | 5/7/2003 | 07:00 | 62.1 | 37 | 0.00 | | 5/7/2003 | 08:00 | 63.4 | 38 | 0.00 | | 5/7/2003 | 09:00 | 66.0 | 36 | 0.00 | | 5/7/2003 | 10:00 | 69.2 | 33 | 0.00 | | 5/7/2003 | 11:00 | 72.1 | 30 | 0.00 | | 5/7/2003 | 12:00 | 74.6 | 26 | 0.00 | | 5/7/2003 | 13:00 | 76.5 | 25 | 0.00 | | 5/7/2003 | 14:00 | 77.4 | 24 | 0.00 | | 5/7/2003 | 15:00 | 77.4 | 23 | 0.00 | | 5/7/2003 | 16:00 | 77.9 | 23 | 0.00 | | 5/7/2003 | 17:00 | 76.6 | 25 | 0.00 | | 5/7/2003 | 18:00 | 74.7 | 26 | 0.00 | | 5/7/2003 | 19:00 | 71.8 | 33 | 0.00 | | 5/7/2003 | 20:00 | 69.5 | 36 | 0.00 | | 5/7/2003 | 21:00 | 67.8 | 40 | 0.00 | | 5/7/2003 | 22:00 | 65.8 | 45 | 0.00 | | 5/7/2003 | 23:00 | 64.9 | 46 | 0.00 | | 5/7/2003 | 24:00 | 63.8 | 47 | 0.00 | | 5/8/2003 | 01:00 | 62.6 | 47 | 0.00 | | 5/8/2003 | 02:00 | 61.8 | 45 | 0.00 | | 5/8/2003 | 03:00 | 59.7 | 45 | 0.00 | | 5/8/2003 | 04:00 | 58.0 | 48 | 0.00 | | 5/8/2003 | 05:00 | 56.8 | 53 | 0.00 | | 5/8/2003 | 06:00 | 55.5 | 56 | 0.00 | | 5/8/2003 | 07:00 | 57.5 | 53 | 0.00 | | 5/8/2003 | 08:00 | 60.5 | 47 | 0.00 | | 5/8/2003 | 09:00 | 65.1 | 40 | 0.00 | | 5/8/2003 | 10:00 | 67.3 | 36 | 0.00 | | 5/8/2003 | 11:00 | 71.1 | 30 | 0.00 | | 5/8/2003 | 12:00 | 72.9 | 29 | 0.00 | | 5/8/2003 | 13:00 | 74.4 | 27 | 0.00 | | 5/8/2003 | 14:00 | 76.4 | 24 | 0.00 | | 5/8/2003 | 15:00 | 77.2 | 23 | 0.00 | | 5/8/2003 | 16:00 | 78.1 | 22 | 0.00 | | 5/8/2003 | 17:00 | 77.3 | 24 | 0.00 | | 5/8/2003 | 18:00 | 76.2 | 22 | 0.00 | | 5/8/2003 | 19:00 | 73.5 | 22 | 0.00 | TABLE B-1 (CONT'D) | Weath | ner Data | a from Yuma P | rovir | ng Ground | |-----------|-------------|---------------|-------|----------------| | | | Average | | | | | Time, | Temperature, | | Precipitation, | | Date | EDST | °F | % | in. | | 5/8/2003 | 20:00 | 69.5 | 29 | 0.00 | | 5/8/2003 | 21:00 | 67.3 | 28 | 0.00 | | 5/8/2003 | 22:00 | 64.5 | 32 | 0.00 | | 5/8/2003 | 23:00 | 62.8 | 32 | 0.00 | | 5/8/2003 | 24:00 | 60.8 | 38 | 0.00 | | 5/9/2003 | 01:00 | 58.6 | 43 | 0.00 | | 5/9/2003 | 02:00 | 57.9 | 45 | 0.00 | | 5/9/2003 | 03:00 | 56.1 | 49 | 0.00 | | 5/9/2003 | 04:00 | 54.6 | 52 | 0.00 | | 5/9/2003 | 05:00 | 55.1 | 52 | 0.00 | | 5/9/2003 | 06:00 | 55.0 | 51 | 0.00 | | 5/9/2003 | 07:00 | 56.7 | 49 | 0.00 | | 5/9/2003 | 08:00 | 59.7 | 45 | 0.00 | | 5/9/2003 | 09:00 | 62.9 | 39 | 0.00 | | 5/9/2003 | 10:00 | 65.8 | 33 | 0.00 | | 5/9/2003 | 11:00 | 67.7 | 29 | 0.00 | | 5/9/2003 | 12:00 | 69.8 | 26 | 0.00 | | 5/9/2003 | 13:00 | 71.4 | 22 | 0.00 | | 5/9/2003 | 14:00 | 72.2 | 17 | 0.00 | | 5/9/2003 | 15:00 | 73.0 | 18 | 0.00 | | 5/9/2003 | 16:00 | 75.0 | 16 | 0.00 | | 5/9/2003 | 17:00 | 76.0 | 14 | 0.00 | | 5/9/2003 | 18:00 | 75.8 | 12 | 0.00 | | 5/9/2003 | 19:00 | 73.5 | 20 | 0.00 | | 5/9/2003 | 20:00 | 71.4 | 20 | 0.00 | | 5/9/2003 | 21:00 | 68.5 | 22 | 0.00 | | 5/9/2003 | 22:00 | 66.4 | 24 | 0.00 | | 5/9/2003 | 23:00 | 65.9 | 23 | 0.00 | | 5/9/2003 | 24:00 | 63.4 | 27 | 0.00 | | 5/10/2003 | 01:00 | 60.5 | 34 | 0.00 | | 5/10/2003 | 02:00 | 59.6 | 39 | 0.00 | | 5/10/2003 | 03:00 | 56.9 | 42 | 0.00 | | 5/10/2003 | 04:00 | 54.6 | 44 | 0.00 | | 5/10/2003 | 05:00 | 53.2 | 43 | 0.00 | | 5/10/2003 | 06:00 | 51.0 | 44 | 0.00 | | 5/10/2003 | 07:00 | 58.1 | 32 | 0.00 | | 5/10/2003 | 08:00 | 64.8 | 31 | 0.00 | | 5/10/2003 | 09:00 | 68.4 | 25 | 0.00 | | 5/10/2003 | 10:00 | 72.5 | 20 | 0.00 | | 5/10/2003 | 11:00 | 76.3 | 15 | 0.00 | | 5/10/2003 | 12:00 | 77.8 | 12 | 0.00 | | 5/10/2003 | 13:00 | 79.8 | 13 | 0.00 | | 5/10/2003 | 14:00 | 81.7 | 12 | 0.00 | | 5/10/2003 | 15:00 | 81.8 | 12 | 0.00 | | 5/10/2003 | 16:00 | 83.2 | 10 | 0.00 | | 3/10/2003 | 10.00 | 05.4 | 10 | 0.00 | TABLE B-1 (CONT'D) | Weath | ier Dat | a from Yuma P | rovir | ng Ground | |-----------|-------------|---------------|-------|----------------| | | | Average | | | | | Time, | Temperature, | RH, | Precipitation, | | Date | EDST | °F | % | in. | | 5/10/2003 | 17:00 | 83.3 | 10 | 0.00 | | 5/10/2003 | 18:00 | 82.7 | 10 | 0.00 | | 5/10/2003 | 19:00 | 81.6 | 10 | 0.00 | | 5/10/2003 | 20:00 | 78.1 | 13 | 0.00 | | 5/10/2003 | 21:00 | 75.4 | 15 | 0.00 | | 5/10/2003 | 22:00 | 72.8 | 15 | 0.00 | | 5/10/2003 | 23:00 | 68.9 | 18 | 0.00 | | 5/10/2003 | 24:00 | 66.1 | 19 | 0.00 | | 5/12/2003 | 01:00 | 71.2 | 21 | 0.00 | | 5/12/2003 | 02:00 | 69.7 | 21 | 0.00 | | 5/12/2003 | 03:00 | 67.2 | 23 | 0.00 | | 5/12/2003 | 04:00 | 63.2 | 24 | 0.00 | | 5/12/2003 | 05:00 | 63.4 | 25 | 0.00 | | 5/12/2003 | 06:00 | 61.7 | 26 | 0.00 | | 5/12/2003 | 07:00 | 65.9 | 21 | 0.00 | | 5/12/2003 | 08:00 | 74.7 | 15 | 0.00 | | 5/12/2003 | 09:00 | 81.7 | 14 | 0.00 | | 5/12/2003 | 10:00 | 86.5 | 12 | 0.00 | | 5/12/2003 | 11:00 | 89.3 | 10 | 0.00 | | 5/12/2003 | 12:00 | 90.8 | 11 | 0.00 | | 5/12/2003 | 13:00 | 93.0 | 8 | 0.00 | | 5/12/2003 | 14:00 | 94.3 | 8 | 0.00 | | 5/12/2003 | 15:00 | 95.7 | 8 | 0.00 | | 5/12/2003 | 16:00 | 95.0 | 8 | 0.00 | | 5/12/2003 | 17:00 | 94.7 | 9 | 0.00 | | 5/12/2003 | 18:00 | 94.7 | 9 | 0.00 | | 5/12/2003 | 19:00 | 92.2 | 9 | 0.00 | | 5/12/2003 | 20:00 | 89.5 | 9 | 0.00 | | 5/12/2003 | 21:00 | 85.3 | 10 | 0.00 | | 5/12/2003 | 22:00 | 83.4 | 16 | 0.00 | | 5/12/2003 | 23:00 | 80.4 | 17 | 0.00 | | 5/12/2003 | 24:00 | 79.1 | 19 | 0.00 | | 5/14/2003 | | 76.0 | 21 | 0.00 | | 5/14/2003 | | 74.1 | 21 | 0.00 | | 5/14/2003 | 03:00 | 72.4 | 22 | 0.00 | | 5/14/2003 | 04:00 | 73.2 | 21 | 0.00 | | 5/14/2003 | 05:00 | 71.8 | 21 | 0.00 | | 5/14/2003 | 06:00 | 73.4 | 18 | 0.00 | | 5/14/2003 | 07:00 | 73.2 | 19 | 0.00 | | 5/14/2003 | 08:00 | 77.0 | 15 | 0.00 | | 5/14/2003 | 09:00 | 82.6 | 13 | 0.00 | | 5/14/2003 | 10:00 | 85.0 | 12 | 0.00 | | 5/14/2003 | 11:00 | 88.9 | 10 | 0.00 | | 5/14/2003 | 12:00 | 92.4 | 9 | 0.00 | | 5/14/2003 | 13:00 | 94.8 | 8 | 0.00 | | 3/14/2003 | 15.00 | 24.0 | O | 0.00 | TABLE B-1 (CONT'D) | Weath | ier Data | a from Yuma P | rovir | ng Ground | |-----------|-------------|---------------|-------|----------------| | | | Average | | | | | Time, | Temperature, | | Precipitation, | | Date | EDST | °F | % | in. | | 5/14/2003 | 14:00 | 97.4 | 7 | 0.00 | | 5/14/2003 | 15:00 | 96.2 | 6 | 0.00 | | 5/14/2003 | 16:00 | 96.5 | 7 | 0.00 | | 5/14/2003 | 17:00 | 94.6 | 9 | 0.00 | | 5/14/2003 | 18:00 | 93.8 | 7 | 0.00 | | 5/14/2003 | 19:00 | 92.0 | 8 | 0.00 | | 5/14/2003 | 20:00 | 87.9 | 10 | 0.00 | | 5/14/2003 | 21:00 | 84.4 | 11 | 0.00 | | 5/14/2003 | 22:00 | 81.9 | 11 | 0.00 | | 5/14/2003 | 23:00 | 79.4 | 12 | 0.00 | | 5/14/2003 | 24:00 | 78.6 | 12 | 0.00 | | 5/15/2003 | 01:00 | 62.5 | 39 | 0.00 | | 5/15/2003 | 02:00 | 61.1 | 40 | 0.00 | | 5/15/2003 | 03:00 | 60.0 | 44 | 0.00 | | 5/15/2003 | 04:00 | 58.1 | 49 | 0.00 | | 5/15/2003 | 05:00 | 57.9 | 51 | 0.00 | | 5/15/2003 | 06:00 | 57.0 | 52 | 0.00 | | 5/15/2003 | 07:00 | 60.8 | 46 | 0.00 | | 5/15/2003 | 08:00 | 64.5 | 45 | 0.00 | | 5/15/2003 | 09:00 | 68.3 | 37 | 0.00 | | 5/15/2003 | 10:00 | 73.1 | 31 | 0.00 | | 5/15/2003 | 11:00 | 78.0 | 26 | 0.00 | | 5/15/2003 | 12:00 | 81.0 | 23 | 0.00 | | 5/15/2003 | 13:00 | 83.4 | 22 | 0.00 | | 5/15/2003 | 14:00 | 85.7 | 20 | 0.00 | | 5/15/2003 | 15:00 | 87.5 | 18 | 0.00 | | 5/15/2003 | 16:00 | 89.7 | 17 | 0.00 | | 5/15/2003 | 17:00 | 89.8 | 17 | 0.00 | | 5/15/2003 | 18:00 | 89.9 | 17 | 0.00 | |
5/15/2003 | 19:00 | 88.4 | 18 | 0.00 | | 5/15/2003 | 20:00 | 86.0 | 19 | 0.00 | | 5/15/2003 | 21:00 | 83.4 | 21 | 0.00 | | 5/15/2003 | 22:00 | 80.2 | 22 | 0.00 | | 5/15/2003 | 23:00 | 75.7 | 25 | 0.00 | | 5/15/2003 | 24:00 | 73.7 | 26 | 0.00 | | 5/16/2003 | 01:00 | 73.9 | 29 | 0.00 | | 5/16/2003 | 02:00 | 70.8 | 32 | 0.00 | | 5/16/2003 | 03:00 | 69.2 | 32 | 0.00 | | 5/16/2003 | 04:00 | 68.5 | 33 | 0.00 | | 5/16/2003 | 05:00 | 66.7 | 35 | 0.00 | | 5/16/2003 | 06:00 | 65.4 | 35 | 0.00 | | 5/16/2003 | 07:00 | 70.5 | 30 | 0.00 | | 5/16/2003 | 08:00 | 79.3 | 23 | 0.00 | | 5/16/2003 | 09:00 | 86.4 | 17 | 0.00 | | 5/16/2003 | 10:00 | 90.0 | 14 | 0.00 | TABLE B-1 (CONT'D) | Name | Weath | ier Data | a from Yuma P | rovir | ng Ground | |---|-----------|-------------|---------------|-------|----------------| | Date EDST °F % in. 5/16/2003 11:00 92.0 14 0.00 5/16/2003 12:00 94.0 13 0.00 5/16/2003 13:00 95.5 12 0.00 5/16/2003 14:00 97.9 11 0.00 5/16/2003 15:00 98.9 11 0.00 5/16/2003 17:00 99.9 11 0.00 5/16/2003 18:00 99.1 10 0.00 5/16/2003 19:00 97.7 11 0.00 5/16/2003 20:00 93.1 12 0.00 5/16/2003 21:00 87.8 14 0.00 5/16/2003 22:00 86.1 16 0.00 5/16/2003 23:00 83.0 18 0.00 5/19/2003 24:00 80.4 19 0.00 5/19/2003 02:00 77.6 19 0.00 5/19/2003 04:00 | | | Average | | | | 5/16/2003 11:00 92.0 14 0.00 5/16/2003 12:00 94.0 13 0.00 5/16/2003 12:00 94.0 13 0.00 5/16/2003 13:00 95.5 12 0.00 5/16/2003 14:00 97.9 11 0.00 5/16/2003 15:00 98.9 11 0.00 5/16/2003 17:00 99.4 12 0.00 5/16/2003 18:00 99.1 10 0.00 5/16/2003 19:00 97.7 11 0.00 5/16/2003 20:00 93.1 12 0.00 5/16/2003 21:00 87.8 14 0.00 5/16/2003 22:00 86.1 16 0.00 5/16/2003 23:00 83.0 18 0.00 5/16/2003 24:00 80.4 19 0.00 5/19/2003 01:00 79.3 19 0.00 5/19/2003 0 | | | | | Precipitation, | | 5/16/2003 12:00 94.0 13 0.00 5/16/2003 13:00 95.5 12 0.00 5/16/2003 14:00 97.9 11 0.00 5/16/2003 15:00 98.9 11 0.00 5/16/2003 16:00 99.9 11 0.00 5/16/2003 17:00 99.4 12 0.00 5/16/2003 18:00 99.1 10 0.00 5/16/2003 19:00 97.7 11 0.00 5/16/2003 20:00 93.1 12 0.00 5/16/2003 21:00 87.8 14 0.00 5/16/2003 23:00 83.0 18 0.00 5/16/2003 23:00 80.4 19 0.00 5/19/2003 01:00 79.3 19 0.00 5/19/2003 02:00 77.6 19 0.00 5/19/2003 03:00 73.4 21 0.00 5/19/2003 0 | Date | EDST | | | | | 5/16/2003 13:00 95.5 12 0.00 5/16/2003 14:00 97.9 11 0.00 5/16/2003 15:00 98.9 11 0.00 5/16/2003 16:00 99.9 11 0.00 5/16/2003 17:00 99.4 12 0.00 5/16/2003 18:00 99.1 10 0.00 5/16/2003 19:00 97.7 11 0.00 5/16/2003 20:00 93.1 12 0.00 5/16/2003 21:00 87.8 14 0.00 5/16/2003 23:00 86.1 16 0.00 5/16/2003 23:00 83.0 18 0.00 5/16/2003 24:00 80.4 19 0.00 5/19/2003 01:00 79.3 19 0.00 5/19/2003 02:00 77.6 19 0.00 5/19/2003 03:00 75.2 20 0.00 5/19/2003 0 | 5/16/2003 | 11:00 | 92.0 | 14 | 0.00 | | 5/16/2003 14:00 97.9 11 0.00 5/16/2003 15:00 98.9 11 0.00 5/16/2003 16:00 99.9 11 0.00 5/16/2003 17:00 99.4 12 0.00 5/16/2003 18:00 99.1 10 0.00 5/16/2003 19:00 97.7 11 0.00 5/16/2003 20:00 87.8 14 0.00 5/16/2003 22:00 86.1 16 0.00 5/16/2003 23:00 83.0 18 0.00 5/16/2003 23:00 80.4 19 0.00 5/19/2003 01:00 79.3 19 0.00 5/19/2003 01:00 79.3 19 0.00 5/19/2003 03:00 75.2 20 0.00 5/19/2003 05:00 71.6 24 0.00 5/19/2003 05:00 71.6 24 0.00 5/19/2003 0 | 5/16/2003 | 12:00 | 94.0 | 13 | 0.00 | | 5/16/2003 15:00 98.9 11 0.00 5/16/2003 16:00 99.9 11 0.00 5/16/2003 17:00 99.4 12 0.00 5/16/2003 18:00 99.1 10 0.00 5/16/2003 19:00 97.7 11 0.00 5/16/2003 20:00 87.8 14 0.00 5/16/2003 21:00 87.8 14 0.00 5/16/2003 23:00 86.1 16 0.00 5/16/2003 23:00 83.0 18 0.00 5/16/2003 24:00 80.4 19 0.00 5/19/2003 01:00 79.3 19 0.00 5/19/2003 03:00 75.2 20 0.00 5/19/2003 03:00 75.2 20 0.00 5/19/2003 05:00 71.6 24 0.00 5/19/2003 05:00 71.6 24 0.00 5/19/2003 0 | 5/16/2003 | 13:00 | 95.5 | 12 | 0.00 | | 5/16/2003 16:00 99.9 11 0.00 5/16/2003 17:00 99.4 12 0.00 5/16/2003 18:00 99.1 10 0.00 5/16/2003 19:00 97.7 11 0.00 5/16/2003 20:00 93.1 12 0.00 5/16/2003 21:00 87.8 14 0.00 5/16/2003 22:00 86.1 16 0.00 5/16/2003 23:00 83.0 18 0.00 5/16/2003 24:00 80.4 19 0.00 5/19/2003 01:00 79.3 19 0.00 5/19/2003 02:00 77.6 19 0.00 5/19/2003 03:00 75.2 20 0.00 5/19/2003 05:00 71.6 24 0.00 5/19/2003 06:00 68.4 25 0.00 5/19/2003 07:00 74.2 23 0.00 5/19/2003 1 | 5/16/2003 | 14:00 | 97.9 | 11 | 0.00 | | 5/16/2003 17:00 99.4 12 0.00 5/16/2003 18:00 99.1 10 0.00 5/16/2003 19:00 97.7 11 0.00 5/16/2003 20:00 93.1 12 0.00 5/16/2003 21:00 87.8 14 0.00 5/16/2003 23:00 86.1 16 0.00 5/16/2003 23:00 83.0 18 0.00 5/16/2003 24:00 80.4 19 0.00 5/19/2003 01:00 79.3 19 0.00 5/19/2003 02:00 77.6 19 0.00 5/19/2003 03:00 75.2 20 0.00 5/19/2003 04:00 73.4 21 0.00 5/19/2003 05:00 71.6 24 0.00 5/19/2003 06:00 68.4 25 0.00 5/19/2003 08:00 80.5 25 0.00 5/19/2003 1 | 5/16/2003 | 15:00 | 98.9 | 11 | 0.00 | | 5/16/2003 18:00 99.1 10 0.00 5/16/2003 19:00 97.7 11 0.00 5/16/2003 20:00 93.1 12 0.00 5/16/2003 21:00 87.8 14 0.00 5/16/2003 22:00 86.1 16 0.00 5/16/2003 23:00 83.0 18 0.00 5/16/2003 24:00 80.4 19 0.00 5/19/2003 01:00 79.3 19 0.00 5/19/2003 02:00 77.6 19 0.00 5/19/2003 03:00 75.2 20 0.00 5/19/2003 05:00 71.6 24 0.00 5/19/2003 05:00 71.6 24 0.00 5/19/2003 06:00 68.4 25 0.00 5/19/2003 07:00 74.2 23 0.00 5/19/2003 10:00 89.7 14 0.00 5/19/2003 1 | 5/16/2003 | 16:00 | 99.9 | 11 | 0.00 | | 5/16/2003 19:00 97.7 11 0.00 5/16/2003 20:00 93.1 12 0.00 5/16/2003 21:00 87.8 14 0.00 5/16/2003 22:00 86.1 16 0.00 5/16/2003 24:00 80.4 19 0.00 5/19/2003 01:00 79.3 19 0.00 5/19/2003 02:00 77.6 19 0.00 5/19/2003 03:00 75.2 20 0.00 5/19/2003 04:00 73.4 21 0.00 5/19/2003 05:00 71.6 24 0.00 5/19/2003 05:00 71.6 24 0.00 5/19/2003 06:00 68.4 25 0.00 5/19/2003 07:00 74.2 23 0.00 5/19/2003 08:00 80.5 25 0.00 5/19/2003 10:00 89.7 14 0.00 5/19/2003 1 | 5/16/2003 | 17:00 | 99.4 | 12 | 0.00 | | 5/16/2003 20:00 93.1 12 0.00 5/16/2003 21:00 87.8 14 0.00 5/16/2003 22:00 86.1 16 0.00 5/16/2003 23:00 83.0 18 0.00 5/16/2003 24:00 80.4 19 0.00 5/19/2003 01:00 79.3 19 0.00 5/19/2003 02:00 77.6 19 0.00 5/19/2003 03:00 75.2 20 0.00 5/19/2003 04:00 73.4 21 0.00 5/19/2003 05:00 71.6 24 0.00 5/19/2003 06:00 68.4 25 0.00 5/19/2003 07:00 74.2 23 0.00 5/19/2003 08:00 80.5 25 0.00 5/19/2003 09:00 84.5 24 0.00 5/19/2003 10:00 89.7 14 0.00 5/19/2003 1 | 5/16/2003 | 18:00 | 99.1 | 10 | 0.00 | | 5/16/2003 21:00 87.8 14 0.00 5/16/2003 22:00 86.1 16 0.00 5/16/2003 23:00 83.0 18 0.00 5/16/2003 24:00 80.4 19 0.00 5/19/2003 01:00 79.3 19 0.00 5/19/2003 02:00 77.6 19 0.00 5/19/2003 03:00 75.2 20 0.00 5/19/2003 04:00 73.4 21 0.00 5/19/2003 05:00 71.6 24 0.00 5/19/2003 06:00 68.4 25 0.00 5/19/2003 07:00 74.2 23 0.00 5/19/2003 08:00 80.5 25 0.00 5/19/2003 10:00 89.7 14 0.00 5/19/2003 11:00 94.4 11 0.00 5/19/2003 13:00 99.8 8 0.00 5/19/2003 15 | 5/16/2003 | 19:00 | 97.7 | 11 | 0.00 | | 5/16/2003 22:00 86.1 16 0.00 5/16/2003 23:00 83.0 18 0.00 5/16/2003 24:00 80.4 19 0.00 5/19/2003 01:00 79.3 19 0.00 5/19/2003 02:00 77.6 19 0.00 5/19/2003 03:00 75.2 20 0.00 5/19/2003 04:00 73.4 21 0.00 5/19/2003 05:00 71.6 24 0.00 5/19/2003 06:00 68.4 25 0.00 5/19/2003 07:00 74.2 23 0.00 5/19/2003 08:00 80.5 25 0.00 5/19/2003 09:00 84.5 24 0.00 5/19/2003 10:00 89.7 14 0.00 5/19/2003 12:00 97.3 10 0.00 5/19/2003 13:00 99.8 8 0.00 5/19/2003 15 | 5/16/2003 | 20:00 | 93.1 | 12 | 0.00 | | 5/16/2003 23:00 83.0 18 0.00 5/16/2003 24:00 80.4 19 0.00 5/19/2003 01:00 79.3 19 0.00 5/19/2003 02:00 77.6 19 0.00 5/19/2003 03:00 75.2 20 0.00 5/19/2003 04:00 73.4 21 0.00 5/19/2003 05:00 71.6 24 0.00 5/19/2003 06:00 68.4 25 0.00 5/19/2003 07:00 74.2 23 0.00 5/19/2003 08:00 80.5 25 0.00 5/19/2003 09:00 84.5 24 0.00 5/19/2003 10:00 89.7 14 0.00 5/19/2003 11:00 94.4 11 0.00 5/19/2003 12:00 97.3 10 0.00 5/19/2003 15:00 101.1 8 0.00 5/19/2003 1 | 5/16/2003 | 21:00 | 87.8 | 14 | 0.00 | | 5/16/2003 24:00 80.4 19 0.00 5/19/2003 01:00 79.3 19 0.00 5/19/2003 02:00 77.6 19 0.00 5/19/2003 03:00 75.2 20 0.00 5/19/2003 04:00 73.4 21 0.00 5/19/2003 05:00 71.6 24 0.00 5/19/2003 06:00 68.4 25 0.00 5/19/2003 07:00 74.2 23 0.00 5/19/2003 08:00 80.5 25 0.00 5/19/2003 09:00 84.5 24 0.00 5/19/2003 10:00 89.7 14 0.00 5/19/2003 11:00 94.4 11 0.00 5/19/2003 12:00 97.3 10 0.00 5/19/2003 13:00 99.8 8 0.00 5/19/2003 15:00 101.1 8 0.00 5/19/2003 15 | 5/16/2003 | 22:00 | 86.1 | 16 | 0.00 | | 5/16/2003 24:00 80.4 19 0.00 5/19/2003 01:00 79.3 19 0.00 5/19/2003 02:00 77.6 19 0.00 5/19/2003 03:00 75.2 20 0.00 5/19/2003 04:00 73.4 21 0.00 5/19/2003 05:00 71.6 24 0.00 5/19/2003 06:00 68.4 25 0.00 5/19/2003 07:00 74.2 23 0.00 5/19/2003 08:00 80.5 25 0.00 5/19/2003 09:00 84.5 24 0.00 5/19/2003 10:00 89.7 14 0.00 5/19/2003 11:00 94.4 11 0.00 5/19/2003 12:00 97.3 10 0.00 5/19/2003 13:00 99.8 8 0.00 5/19/2003 15:00 101.1 8 0.00 5/19/2003 15 | 5/16/2003 | 23:00 | 83.0 | 18 | 0.00 | | 5/19/2003 02:00 77.6 19 0.00 5/19/2003 03:00 75.2 20 0.00 5/19/2003 04:00 73.4 21 0.00 5/19/2003 05:00 71.6 24 0.00 5/19/2003 06:00 68.4 25 0.00 5/19/2003 07:00 74.2 23 0.00 5/19/2003 08:00 80.5 25 0.00 5/19/2003 09:00 84.5 24 0.00 5/19/2003
10:00 89.7 14 0.00 5/19/2003 12:00 97.3 10 0.00 5/19/2003 12:00 97.3 10 0.00 5/19/2003 13:00 99.8 8 0.00 5/19/2003 15:00 101.0 8 0.00 5/19/2003 15:00 101.1 8 0.00 5/19/2003 17:00 101.9 7 0.00 5/19/2003 19 | 5/16/2003 | 24:00 | 80.4 | 19 | 0.00 | | 5/19/2003 03:00 75.2 20 0.00 5/19/2003 04:00 73.4 21 0.00 5/19/2003 05:00 71.6 24 0.00 5/19/2003 06:00 68.4 25 0.00 5/19/2003 07:00 74.2 23 0.00 5/19/2003 08:00 80.5 25 0.00 5/19/2003 10:00 89.7 14 0.00 5/19/2003 11:00 94.4 11 0.00 5/19/2003 12:00 97.3 10 0.00 5/19/2003 13:00 99.8 8 0.00 5/19/2003 14:00 101.0 8 0.00 5/19/2003 15:00 101.1 8 0.00 5/19/2003 16:00 101.3 7 0.00 5/19/2003 17:00 101.9 7 0.00 5/19/2003 19:00 99.1 8 0.00 5/19/2003 21: | 5/19/2003 | 01:00 | 79.3 | 19 | 0.00 | | 5/19/2003 04:00 73.4 21 0.00 5/19/2003 05:00 71.6 24 0.00 5/19/2003 06:00 68.4 25 0.00 5/19/2003 07:00 74.2 23 0.00 5/19/2003 08:00 80.5 25 0.00 5/19/2003 09:00 84.5 24 0.00 5/19/2003 10:00 89.7 14 0.00 5/19/2003 11:00 94.4 11 0.00 5/19/2003 12:00 97.3 10 0.00 5/19/2003 13:00 99.8 8 0.00 5/19/2003 14:00 101.0 8 0.00 5/19/2003 15:00 101.1 8 0.00 5/19/2003 17:00 101.9 7 0.00 5/19/2003 18:00 101.0 7 0.00 5/19/2003 21:00 91.4 11 0.00 5/19/2003 22 | 5/19/2003 | 02:00 | 77.6 | 19 | 0.00 | | 5/19/2003 05:00 71.6 24 0.00 5/19/2003 06:00 68.4 25 0.00 5/19/2003 07:00 74.2 23 0.00 5/19/2003 08:00 80.5 25 0.00 5/19/2003 09:00 84.5 24 0.00 5/19/2003 10:00 89.7 14 0.00 5/19/2003 11:00 94.4 11 0.00 5/19/2003 12:00 97.3 10 0.00 5/19/2003 13:00 99.8 8 0.00 5/19/2003 14:00 101.0 8 0.00 5/19/2003 15:00 101.1 8 0.00 5/19/2003 16:00 101.3 7 0.00 5/19/2003 17:00 101.9 7 0.00 5/19/2003 19:00 99.1 8 0.00 5/19/2003 20:00 95.2 9 0.00 5/19/2003 21:0 | 5/19/2003 | 03:00 | 75.2 | 20 | 0.00 | | 5/19/2003 06:00 68.4 25 0.00 5/19/2003 07:00 74.2 23 0.00 5/19/2003 08:00 80.5 25 0.00 5/19/2003 09:00 84.5 24 0.00 5/19/2003 10:00 89.7 14 0.00 5/19/2003 11:00 94.4 11 0.00 5/19/2003 12:00 97.3 10 0.00 5/19/2003 13:00 99.8 8 0.00 5/19/2003 14:00 101.0 8 0.00 5/19/2003 15:00 101.1 8 0.00 5/19/2003 16:00 101.3 7 0.00 5/19/2003 17:00 101.9 7 0.00 5/19/2003 19:00 99.1 8 0.00 5/19/2003 20:00 95.2 9 0.00 5/19/2003 21:00 91.4 11 0.00 5/19/2003 22:0 | 5/19/2003 | 04:00 | 73.4 | 21 | 0.00 | | 5/19/2003 07:00 74.2 23 0.00 5/19/2003 08:00 80.5 25 0.00 5/19/2003 09:00 84.5 24 0.00 5/19/2003 10:00 89.7 14 0.00 5/19/2003 11:00 94.4 11 0.00 5/19/2003 12:00 97.3 10 0.00 5/19/2003 13:00 99.8 8 0.00 5/19/2003 14:00 101.0 8 0.00 5/19/2003 15:00 101.1 8 0.00 5/19/2003 16:00 101.3 7 0.00 5/19/2003 17:00 101.9 7 0.00 5/19/2003 18:00 101.0 7 0.00 5/19/2003 19:00 99.1 8 0.00 5/19/2003 21:00 91.4 11 0.00 5/19/2003 22:00 88.1 11 0.00 5/19/2003 23: | 5/19/2003 | 05:00 | 71.6 | 24 | 0.00 | | 5/19/2003 08:00 80.5 25 0.00 5/19/2003 09:00 84.5 24 0.00 5/19/2003 10:00 89.7 14 0.00 5/19/2003 11:00 94.4 11 0.00 5/19/2003 12:00 97.3 10 0.00 5/19/2003 13:00 99.8 8 0.00 5/19/2003 14:00 101.0 8 0.00 5/19/2003 15:00 101.1 8 0.00 5/19/2003 16:00 101.3 7 0.00 5/19/2003 17:00 101.9 7 0.00 5/19/2003 18:00 101.0 7 0.00 5/19/2003 19:00 99.1 8 0.00 5/19/2003 21:00 91.4 11 0.00 5/19/2003 22:00 88.1 11 0.00 5/19/2003 23:00 83.8 13 0.00 5/19/2003 24: | 5/19/2003 | 06:00 | 68.4 | 25 | 0.00 | | 5/19/2003 09:00 84.5 24 0.00 5/19/2003 10:00 89.7 14 0.00 5/19/2003 11:00 94.4 11 0.00 5/19/2003 12:00 97.3 10 0.00 5/19/2003 13:00 99.8 8 0.00 5/19/2003 14:00 101.0 8 0.00 5/19/2003 15:00 101.1 8 0.00 5/19/2003 16:00 101.3 7 0.00 5/19/2003 17:00 101.9 7 0.00 5/19/2003 18:00 101.0 7 0.00 5/19/2003 19:00 99.1 8 0.00 5/19/2003 20:00 95.2 9 0.00 5/19/2003 21:00 91.4 11 0.00 5/19/2003 22:00 88.1 11 0.00 5/19/2003 23:00 83.8 13 0.00 5/19/2003 24:0 | 5/19/2003 | 07:00 | 74.2 | 23 | 0.00 | | 5/19/2003 10:00 89.7 14 0.00 5/19/2003 11:00 94.4 11 0.00 5/19/2003 12:00 97.3 10 0.00 5/19/2003 13:00 99.8 8 0.00 5/19/2003 14:00 101.0 8 0.00 5/19/2003 15:00 101.1 8 0.00 5/19/2003 16:00 101.3 7 0.00 5/19/2003 17:00 101.9 7 0.00 5/19/2003 18:00 101.0 7 0.00 5/19/2003 19:00 99.1 8 0.00 5/19/2003 20:00 95.2 9 0.00 5/19/2003 21:00 91.4 11 0.00 5/19/2003 22:00 88.1 11 0.00 5/19/2003 22:00 81.7 15 0.00 6/4/2003 01:00 81.0 19 0.00 6/4/2003 02:00< | 5/19/2003 | 08:00 | 80.5 | 25 | 0.00 | | 5/19/2003 10:00 89.7 14 0.00 5/19/2003 11:00 94.4 11 0.00 5/19/2003 12:00 97.3 10 0.00 5/19/2003 13:00 99.8 8 0.00 5/19/2003 14:00 101.0 8 0.00 5/19/2003 15:00 101.1 8 0.00 5/19/2003 16:00 101.3 7 0.00 5/19/2003 17:00 101.9 7 0.00 5/19/2003 18:00 101.0 7 0.00 5/19/2003 19:00 99.1 8 0.00 5/19/2003 20:00 95.2 9 0.00 5/19/2003 21:00 91.4 11 0.00 5/19/2003 22:00 88.1 11 0.00 5/19/2003 22:00 81.7 15 0.00 6/4/2003 01:00 81.0 19 0.00 6/4/2003 02:00< | 5/19/2003 | 09:00 | 84.5 | 24 | 0.00 | | 5/19/2003 12:00 97.3 10 0.00 5/19/2003 13:00 99.8 8 0.00 5/19/2003 14:00 101.0 8 0.00 5/19/2003 15:00 101.1 8 0.00 5/19/2003 16:00 101.3 7 0.00 5/19/2003 17:00 101.9 7 0.00 5/19/2003 18:00 101.0 7 0.00 5/19/2003 19:00 99.1 8 0.00 5/19/2003 20:00 95.2 9 0.00 5/19/2003 21:00 91.4 11 0.00 5/19/2003 22:00 88.1 11 0.00 5/19/2003 23:00 83.8 13 0.00 5/19/2003 24:00 81.7 15 0.00 6/4/2003 01:00 81.0 19 0.00 6/4/2003 02:00 80.0 22 0.00 6/4/2003 04:00 </td <td>5/19/2003</td> <td>10:00</td> <td></td> <td>14</td> <td>0.00</td> | 5/19/2003 | 10:00 | | 14 | 0.00 | | 5/19/2003 13:00 99.8 8 0.00 5/19/2003 14:00 101.0 8 0.00 5/19/2003 15:00 101.1 8 0.00 5/19/2003 16:00 101.3 7 0.00 5/19/2003 17:00 101.9 7 0.00 5/19/2003 18:00 101.0 7 0.00 5/19/2003 19:00 99.1 8 0.00 5/19/2003 20:00 95.2 9 0.00 5/19/2003 21:00 91.4 11 0.00 5/19/2003 22:00 88.1 11 0.00 5/19/2003 23:00 83.8 13 0.00 5/19/2003 24:00 81.7 15 0.00 6/4/2003 01:00 81.0 19 0.00 6/4/2003 03:00 78.0 22 0.00 6/4/2003 04:00 75.5 28 0.00 6/4/2003 05:00 <td>5/19/2003</td> <td>11:00</td> <td>94.4</td> <td>11</td> <td>0.00</td> | 5/19/2003 | 11:00 | 94.4 | 11 | 0.00 | | 5/19/2003 14:00 101.0 8 0.00 5/19/2003 15:00 101.1 8 0.00 5/19/2003 16:00 101.3 7 0.00 5/19/2003 17:00 101.9 7 0.00 5/19/2003 18:00 101.0 7 0.00 5/19/2003 19:00 99.1 8 0.00 5/19/2003 20:00 95.2 9 0.00 5/19/2003 21:00 91.4 11 0.00 5/19/2003 22:00 88.1 11 0.00 5/19/2003 23:00 83.8 13 0.00 5/19/2003 24:00 81.7 15 0.00 6/4/2003 01:00 81.0 19 0.00 6/4/2003 02:00 80.0 22 0.00 6/4/2003 04:00 75.5 28 0.00 6/4/2003 05:00 75.1 32 0.00 6/4/2003 06:00 <td>5/19/2003</td> <td>12:00</td> <td>97.3</td> <td>10</td> <td>0.00</td> | 5/19/2003 | 12:00 | 97.3 | 10 | 0.00 | | 5/19/2003 15:00 101.1 8 0.00 5/19/2003 16:00 101.3 7 0.00 5/19/2003 17:00 101.9 7 0.00 5/19/2003 18:00 101.0 7 0.00 5/19/2003 19:00 99.1 8 0.00 5/19/2003 20:00 95.2 9 0.00 5/19/2003 21:00 91.4 11 0.00 5/19/2003 22:00 88.1 11 0.00 5/19/2003 23:00 83.8 13 0.00 5/19/2003 24:00 81.7 15 0.00 6/4/2003 01:00 81.0 19 0.00 6/4/2003 02:00 80.0 22 0.00 6/4/2003 03:00 78.0 22 0.00 6/4/2003 05:00 75.5 28 0.00 6/4/2003 05:00 75.1 32 0.00 6/4/2003 06:00 <td>5/19/2003</td> <td>13:00</td> <td>99.8</td> <td>8</td> <td>0.00</td> | 5/19/2003 | 13:00 | 99.8 | 8 | 0.00 | | 5/19/2003 16:00 101.3 7 0.00 5/19/2003 17:00 101.9 7 0.00 5/19/2003 18:00 101.0 7 0.00 5/19/2003 19:00 99.1 8 0.00 5/19/2003 20:00 95.2 9 0.00 5/19/2003 21:00 91.4 11 0.00 5/19/2003 22:00 88.1 11 0.00 5/19/2003 23:00 83.8 13 0.00 5/19/2003 24:00 81.7 15 0.00 6/4/2003 01:00 81.0 19 0.00 6/4/2003 02:00 80.0 22 0.00 6/4/2003 04:00 75.5 28 0.00 6/4/2003 05:00 75.1 32 0.00 6/4/2003 06:00 74.3 34 0.00 | 5/19/2003 | 14:00 | 101.0 | 8 | 0.00 | | 5/19/2003 17:00 101.9 7 0.00 5/19/2003 18:00 101.0 7 0.00 5/19/2003 19:00 99.1 8 0.00 5/19/2003 20:00 95.2 9 0.00 5/19/2003 21:00 91.4 11 0.00 5/19/2003 22:00 88.1 11 0.00 5/19/2003 23:00 83.8 13 0.00 5/19/2003 24:00 81.7 15 0.00 6/4/2003 01:00 81.0 19 0.00 6/4/2003 02:00 80.0 22 0.00 6/4/2003 03:00 78.0 22 0.00 6/4/2003 04:00 75.5 28 0.00 6/4/2003 05:00 75.1 32 0.00 6/4/2003 06:00 74.3 34 0.00 | 5/19/2003 | 15:00 | 101.1 | 8 | 0.00 | | 5/19/2003 17:00 101.9 7 0.00 5/19/2003 18:00 101.0 7 0.00 5/19/2003 19:00 99.1 8 0.00 5/19/2003 20:00 95.2 9 0.00 5/19/2003 21:00 91.4 11 0.00 5/19/2003 22:00 88.1 11 0.00 5/19/2003 23:00 83.8 13 0.00 5/19/2003 24:00 81.7 15 0.00 6/4/2003 01:00 81.0 19 0.00 6/4/2003 02:00 80.0 22 0.00 6/4/2003 03:00 78.0 22 0.00 6/4/2003 04:00 75.5 28 0.00 6/4/2003 05:00 75.1 32 0.00 6/4/2003 06:00 74.3 34 0.00 | 5/19/2003 | 16:00 | 101.3 | 7 | 0.00 | | 5/19/2003 18:00 101.0 7 0.00 5/19/2003 19:00 99.1 8 0.00 5/19/2003 20:00 95.2 9 0.00 5/19/2003 21:00 91.4 11 0.00 5/19/2003 22:00 88.1 11 0.00 5/19/2003 23:00 83.8 13 0.00 5/19/2003 24:00 81.7 15 0.00 6/4/2003 01:00 81.0 19 0.00 6/4/2003 02:00 80.0 22 0.00 6/4/2003 04:00 75.5 28 0.00 6/4/2003 05:00 75.1 32 0.00 6/4/2003 06:00 74.3 34 0.00 | 5/19/2003 | | | 7 | | | 5/19/2003 19:00 99.1 8 0.00 5/19/2003 20:00 95.2 9 0.00 5/19/2003 21:00 91.4 11 0.00 5/19/2003 22:00 88.1 11 0.00 5/19/2003 23:00 83.8 13 0.00 5/19/2003 24:00 81.7 15 0.00 6/4/2003 01:00 81.0 19 0.00 6/4/2003 02:00 80.0 22 0.00 6/4/2003 03:00 78.0 22 0.00 6/4/2003 05:00 75.5 28 0.00 6/4/2003 06:00 74.3 34 0.00 | 5/19/2003 | 18:00 | | 7 | | | 5/19/2003 20:00 95.2 9 0.00 5/19/2003 21:00 91.4 11 0.00 5/19/2003 22:00 88.1 11 0.00 5/19/2003 23:00 83.8 13 0.00 5/19/2003 24:00 81.7 15 0.00 6/4/2003 01:00 81.0 19 0.00 6/4/2003 02:00 80.0 22 0.00 6/4/2003 03:00 78.0 22 0.00 6/4/2003 04:00 75.5 28 0.00 6/4/2003 05:00 75.1 32 0.00 6/4/2003 06:00 74.3 34 0.00 | 5/19/2003 | 19:00 | 99.1 | 8 | | | 5/19/2003 21:00 91.4 11 0.00 5/19/2003 22:00 88.1 11 0.00 5/19/2003 23:00 83.8 13 0.00 5/19/2003 24:00 81.7 15 0.00 6/4/2003 01:00 81.0 19 0.00 6/4/2003 02:00 80.0 22 0.00 6/4/2003 03:00 78.0 22 0.00 6/4/2003 04:00 75.5 28 0.00 6/4/2003 05:00 75.1 32 0.00 6/4/2003 06:00 74.3 34 0.00 | • | | 95.2 | 9 | | | 5/19/2003 22:00 88.1 11 0.00 5/19/2003 23:00 83.8 13 0.00 5/19/2003 24:00 81.7 15 0.00 6/4/2003 01:00 81.0 19 0.00 6/4/2003 02:00 80.0 22 0.00 6/4/2003 03:00 78.0 22 0.00 6/4/2003 04:00 75.5 28 0.00 6/4/2003 05:00 75.1 32 0.00 6/4/2003 06:00 74.3 34 0.00 | | | | | | | 5/19/2003 23:00 83.8 13 0.00 5/19/2003 24:00 81.7 15 0.00 6/4/2003 01:00 81.0 19 0.00 6/4/2003 02:00 80.0 22 0.00 6/4/2003 03:00 78.0 22 0.00
6/4/2003 04:00 75.5 28 0.00 6/4/2003 05:00 75.1 32 0.00 6/4/2003 06:00 74.3 34 0.00 | | | | | | | 5/19/2003 24:00 81.7 15 0.00 6/4/2003 01:00 81.0 19 0.00 6/4/2003 02:00 80.0 22 0.00 6/4/2003 03:00 78.0 22 0.00 6/4/2003 04:00 75.5 28 0.00 6/4/2003 05:00 75.1 32 0.00 6/4/2003 06:00 74.3 34 0.00 | | | | | | | 6/4/2003 01:00 81.0 19 0.00 6/4/2003 02:00 80.0 22 0.00 6/4/2003 03:00 78.0 22 0.00 6/4/2003 04:00 75.5 28 0.00 6/4/2003 05:00 75.1 32 0.00 6/4/2003 06:00 74.3 34 0.00 | | | | | | | 6/4/2003 02:00 80.0 22 0.00 6/4/2003 03:00 78.0 22 0.00 6/4/2003 04:00 75.5 28 0.00 6/4/2003 05:00 75.1 32 0.00 6/4/2003 06:00 74.3 34 0.00 | | | | | | | 6/4/2003 03:00 78.0 22 0.00 6/4/2003 04:00 75.5 28 0.00 6/4/2003 05:00 75.1 32 0.00 6/4/2003 06:00 74.3 34 0.00 | | | | | | | 6/4/2003 04:00 75.5 28 0.00 6/4/2003 05:00 75.1 32 0.00 6/4/2003 06:00 74.3 34 0.00 | | | | | | | 6/4/2003 05:00 75.1 32 0.00 6/4/2003 06:00 74.3 34 0.00 | | | | | | | 6/4/2003 06:00 74.3 34 0.00 | | | | | | | | | | | | | | 6/4/2003 07:00 77.1 32 0.00 | | | 77.1 | 32 | | TABLE B-1 (CONT'D) | Weat | her Dat | ta from Yuma l | Provi | ng Ground | |----------|-------------|----------------|-------|----------------| | | | Average | | | | | Time, | Temperature, | RH, | Precipitation, | | Date | EDST | °F | % | in. | | 6/4/2003 | 08:00 | 82.1 | 27 | 0.00 | | 6/4/2003 | 09:00 | 87.3 | 22 | 0.00 | | 6/4/2003 | 10:00 | 89.9 | 19 | 0.00 | | 6/4/2003 | 11:00 | 93.9 | 15 | 0.00 | | 6/4/2003 | 12:00 | 95.8 | 14 | 0.00 | | 6/4/2003 | 13:00 | 98.5 | 13 | 0.00 | | 6/4/2003 | 14:00 | 100.8 | 12 | 0.00 | | 6/4/2003 | 15:00 | 102.5 | 12 | 0.00 | | 6/4/2003 | 16:00 | 103.5 | 11 | 0.00 | | 6/4/2003 | 17:00 | 103.4 | 10 | 0.00 | | 6/4/2003 | 18:00 | 102.5 | 10 | 0.00 | | 6/4/2003 | 19:00 | 100.0 | 10 | 0.00 | | 6/4/2003 | 20:00 | 96.6 | 11 | 0.00 | | 6/4/2003 | 21:00 | 94.1 | 11 | 0.00 | | 6/4/2003 | 22:00 | 90.9 | 12 | 0.00 | | 6/4/2003 | 23:00 | 86.7 | 14 | 0.00 | | 6/4/2003 | 24:00 | 84.1 | 16 | 0.00 | ## APPENDIX C. SOIL MOISTURE SOIL MOISTURE LOGS (6 through 17, 19 through 22, and 28 through 30 May 2003) | Date | Time | | | bratio
ading | n Area
s (%) | l | Time | Time Mogul Area
Readings (%) | | | | | | Desert Extreme Area
Readings (%) | | | | | |-------------------------|--------------|------|-----|-----------------|-----------------|--------|--------------|---------------------------------|------|--------|-------|--------|-------------|-------------------------------------|-----|--------|-----|--------| | | | 0 to | | 12 to | | 36 to | | 0 to | 6 to | | 24 to | 36 to | | 0 to | | 12 to | | 36 to | | 5 / 5 / 2002 | 07.40 | | | 24 in. | 36 in. | 48 in. | 0007 | 6 in. | | 24 in. | | 48 in. | 000 | | | 24 in. | | 48 in. | | 5/6/2003 | 0748
1237 | 1.8 | 2.2 | 3.7 | 3.6 | 4.0 | 0807
1246 | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | 800
1254 | 1.7 | 2.0 | 3.5 | 3.9 | 4.0 | | 5/7/2002 | | 1.8 | 2.2 | 3.6 | 3.6 | | | 1.6 | 2.0 | 3.6 | | 3.9 | _ | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | | 5/7/2003 | 0723 | | 2.2 | 3.7 | 3.6 | 3.9 | 0740 | 1.6 | 2.0 | | 3.9 | 4.0 | 733 | | 2.0 | | 3.9 | 4.1 | | 5 /0 /0002 | 1255 | 1.8 | 2.2 | 3.6 | 3.6 | 4.0 | 1310 | 1.6 | 2.0 | 3.5 | | | 1305 | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | | 5/8/2003 | 0715
1243 | 1.8 | 2.2 | 3.7 | 3.6 | 3.9 | 0724
1250 | 1.6 | 2.0 | 3.6 | 4.0 | 3.9 | 732
1258 | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | | 5/0/2002 | _ | 1.8 | | | 3.6 | | | 1.6 | 2.0 | 3.5 | | | | | | 3.4 | 3.9 | | | 5/9/2003 | 0623 | 1.8 | 2.2 | 3.6 | 3.6 | 3.9 | 0638 | 1.6 | 2.0 | 3.5 | 3.9 | 3.9 | 631 | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | | 5 /1 0 /2002 | 1306 | 1.8 | 2.2 | 3.6 | 3.6 | 3.9 | 1315 | 1.6 | 2.0 | 3.5 | 3.9 | 3.9 | 1324 | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | | 5/10/2003 | 0618 | 1.8 | 2.2 | 3.7 | 3.6 | 3.9 | 0626 | 1.6 | 2.0 | 3.5 | 3.9 | 4.0 | 634 | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | | 5 /1 2 /2002 | 1203 | 1.8 | 2.2 | 3.6 | 3.6 | 3.9 | 1212 | 1.6 | 2.0 | 3.6 | 3.9 | 4.0 | 1221 | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | | 5/12/2003 | 0630 | 1.8 | 2.2 | 3.7 | 3.6 | 3.9 | 0638 | 1.6 | 2.0 | 3.6 | 3.9 | 4.0 | 644 | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | | 5 /1 2 /2 00 0 | 1256 | 1.8 | 2.2 | 3.6 | 3.6 | 3.9 | 1305 | 1.6 | 2.0 | 3.5 | 3.9 | 4.0 | 1313 | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | | 5/13/2003 | 0711 | 1.8 | 2.2 | 3.6 | 3.6 | 3.9 | 0719 | 1.7 | 2.0 | 3.6 | 3.9 | 4.0 | 726 | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | | - /4 / / 2 0 0 0 | 1312 | 1.8 | 2.2 | 3.7 | 3.6 | 4.0 | 1323 | 1.6 | 2.0 | 3.6 | 3.9 | 4.0 | 1332 | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | | 5/14/2003 | 0630 | 1.8 | 2.2 | 3.7 | 3.6 | 4.0 | 0639 | 1.7 | 2.0 | 3.6 | 3.9 | 4.0 | 647 | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | | - /4 - /0 0 0 0 | 1302 | 1.8 | 2.2 | 3.7 | 3.6 | 3.9 | 1312 | 1.7 | 2.0 | 3.6 | 4.0 | 4.0 | 1318 | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | | _ | 0626 | 1.8 | 2.2 | 3.6 | 3.6 | 3.9 | 0640 | 1.7 | 2.0 | 3.6 | 3.9 | 4.0 | 648 | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | | 7 /4 × /2 0 0 0 | 1302 | 1.8 | 2.2 | 3.7 | 3.6 | 4.0 | 1310 | 1.6 | 2.0 | 3.6 | 4.0 | 4.0 | 1318 | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | | 5/16/2003 | 0622 | 1.8 | 2.2 | 3.7 | 3.6 | 3.9 | 0629 | 1.7 | 2.0 | 3.6 | 4.0 | 4.0 | 0637 | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | | | 1250 | 1.8 | 2.2 | 3.6 | 3.6 | 3.9 | 1258 | 1.6 | 2.0 | 3.5 | 3.9 | 4.0 | 1305 | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | | 5/17/2003 | 0610 | 1.8 | 2.2 | 3.7 | 3.6 | 3.9 | 0618 | 1.6 | 2.0 | 3.6 | 3.9 | 4.0 | 0626 | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | | | 1319 | 1.8 | 2.2 | 3.6 | 3.6 | 4.0 | 1327 | 1.6 | 2.0 | 3.6 | 3.9 | 4.0 | 1334 | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | | 5/19/2003 | 0600 | 1.8 | 2.2 | 3.6 | 3.6 | 4.0 | 0608 | 1.6 | 1.9 | 3.6 | 3.9 | 4.0 | 0615 | 1.7 | 2.0 | 3.4 | 4.0 | 4.1 | | | 1306 | 1.8 | 2.2 | 3.7 | 3.6 | 4.0 | 1316 | 1.6 | 2.0 | 3.6 | 3.9 | 4.0 | 1324 | 1.7 | 2.0 | 3.4 | 4.0 | 4.1 | | 5/20/2003 | 0534 | 1.8 | 2.2 | 3.7 | 3.6 | 4.0 | 0542 | 1.6 | 2.0 | 3.6 | 3.9 | 4.0 | 0550 | 1.7 | 2.0 | 3.4 | 3.9 | 4.1 | | | 1311 | 1.8 | 2.2 | 3.7 | 3.6 | 4.0 | 1320 | 1.6 | 2.0 | 3.6 | 3.9 | 4.0 | 1326 | 1.7 | 2.0 | 3.4 | 4.0 | 4.1 | | 5/21/2003 | 0547 | 1.8 | 2.2 | 3.7 | 3.6 | 4.0 | 0555 | 1.6 | 2.0 | 3.6 | 4.0 | 4.1 | 0603 | 1.7 | 2.0 | 3.4 | 4.0 | 4.1 | | | 1301 | 1.8 | 2.2 | 3.7 | 3.6 | 4.0 | 1309 | 1.6 | 2.0 | 3.6 | 4.0 | 4.0 | 1316 | 1.7 | 2.0 | 3.4 | 4.0 | 4.1 | | 5/22/2003 | 0535 | 1.8 | 2.2 | 3.7 | 3.6 | 4.0 | 0543 | 1.6 | 2.0 | 3.6 | 4.0 | 4.0 | 0550 | 1.7 | 2.0 | 3.4 | 4.0 | 4.1 | | | 1303 | 1.8 | 2.2 | 3.7 | 3.6 | 4.0 | 1311 | 1.6 | 2.0 | 3.6 | 4.0 | 4.0 | 1318 | 1.7 | 2.0 | 3.4 | 4.0 | 4.1 | | 5/28/2003 | | | 2.2 | 3.7 | 3.6 | 4.0 | 0730 | | | 3.6 | 4.0 | 4.0 | 0743 | | 2.0 | 3.4 | 4.0 | 4.1 | | | 1210 | 1.8 | 2.2 | 3.7 | 3.6 | 4.0 | 1218 | 1.6 | 2.0 | 3.6 | 4.0 | 4.0 | 1225 | 1.7 | 2.0 | 3.4 | 4.0 | 4.1 | | 5/29/2003 | 0645 | 1.8 | 2.2 | 3.7 | 3.6 | 4.0 | 0653 | 1.6 | 2.0 | 3.6 | 4.0 | 4.0 | 0700 | 1.7 | 2.0 | 3.4 | 4.0 | 4.1 | | | 1222 | 1.8 | 2.2 | 3.7 | 3.6 | 4.0 | 1230 | 1.6 | 2.0 | 3.6 | 4.0 | 4.0 | 1237 | 1.7 | 2.0 | 3.4 | 4.0 | 4.1 | | 5/30/2003 | 0600 | 1.8 | 2.2 | 3.7 | 3.6 | 4.0 | 0609 | | 2.0 | 3.6 | 4.0 | 4.0 | 0616 | 1.7 | 2.0 | 3.4 | 4.0 | 4.1 | | | 1239 | 1.8 | 2.2 | 3.7 | 3.6 | 4.0 | 1248 | 1.6 | 2.0 | 3.6 | 4.0 | 4.0 | 1255 | 1.7 | 2.0 | 3.4 | 4.0 | 4.1 | | | No. | | Status | Status | | | | | Track | | | | |----------|----------------|----------------------|-------------------|--------|------------------|---|---|--------|-----------------|-----------------|------------------|-----| | | of | | Start | | Duration, | | Operational Status - | Track | Method=Other | | | | | Date | People | Area Tested | Time | Time | min | Operational Status | Comments | Method | Explain | Pattern | Field Condi | | | 5/5/2003 | | INTIAL SETUP | 1015 | 1045 | <mark>30</mark> | SET UP/MOBILIZATION | SETTING UP
EQUIPMENT | NA | <mark>NA</mark> | NA | HOT | DRY | | 5/5/2003 | 4 | INTIAL SETUP | 1045 | 1100 | <mark>15</mark> | BREAK/LUNCH | LUNCH | NA | NA
NA | <mark>NA</mark> | <mark>HOT</mark> | DRY | | 5/5/2003 | <mark>4</mark> | INTIAL SETUP | 1100 | 1530 | <mark>270</mark> | SET UP/MOBILIZATION | <mark>SETTING UP</mark>
EQUIPMENT | NA | <mark>NA</mark> | NA | HOT | DRY | | 5/5/2003 | <mark>4</mark> | INITIAL SETUP | 1530 | 1600 | <mark>30</mark> | SET UP/MOBILIZATION | BREAKING DOWN EQUIPMENT EOD | NA | <mark>NA</mark> | NA | HOT | DRY | | 5/6/2003 | 5 | INITIAL SETUP | 0730 | 0815 | <mark>45</mark> | SET UP/MOBILIZATION | SETTING UP
EQUIPMENT | GPS | NA | NA | HOT | DRY | | 5/6/2003 | 5 | CALIBRATION
LANES | 0815 | 0915 | <mark>60</mark> | COLLECTING DATA | RUNNING CAL LANE,
BI DIRECTION,
NORTH/SOUTH | NA | NA | NA | HOT | DRY | | 5/6/2003 | <mark>5</mark> | CALIBRATION
LANES | <mark>0915</mark> | 1030 | <mark>75</mark> | DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK | CHECKING/
DOWNLOADING DATA | GPS | NA | NA
NA | НОТ | DRY | | 5/6/2003 | <mark>5</mark> | CALIBRATION
LANES | 1030 | 1120 | <mark>50</mark> | COLLECTING DATA | RUNNING CAL LANE BI DIRECTION EAST/WEST | GPS | NA | <mark>NA</mark> | НОТ | DRY | | 5/6/2003 | <mark>5</mark> | CALIBRATION
LANES | 1120 | 1140 | <mark>70</mark> | DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK | CHECKING/
DOWNLOADING DATA | NA | NA | NA | HOT | DRY | | 5/6/2003 | 5 | CALIBRATION
LANES | 1140 | 1210 | <mark>30</mark> | BREAK/LUNCH | LUNCH | GPS | NA | NA | HOT | DRY | | 5/6/2003 | 5 | CALIBRATION
LANES | 1210 | 1240 | 30 | DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK | CHECKING/
DOWNLOADING DATA | NA | NA | NA | HOT | DRY | | 5/6/2003 | 5 | BLIND TEST
GRID | 1240 | 1355 | 75 | COLLECTING DATA | RUNNING BTG,
BIDIRECTION
EAST/WEST | GPS | NA | NA | НОТ | DRY | | 5/6/2003 | 5 | BLIND TEST
GRID | 1355 | 1430 | 35 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING DATA | GPS | NA | NA | НОТ | DRY | | 5/6/2003 | 5 | CALIBRATION
PIT | 1430 | 1450 | 20 | SET UP/MOBILIZATION | SETTING UP
EQUIPMENT | GPS | NA | NA | НОТ | DRY | | 5/6/2003 | 5 | CALIBRATION
PIT | 1450 | 1515 | 25 | COLLECTING DATA | COLLECT DATA
OVER
PIT | GPS | NA | NA | НОТ | DRY | Note: Activities pertinent to this specific demonstration are indicated in highlighted text. | | No. | | Status | | | | | | Track | | | | |----------|--------|--------------------|--------|------|-----------|---|---|--------|--------------|---------|--------------|-----| | | of | | Start | | Duration, | | Operational Status - | | Method=Other | | | | | | People | | Time | Time | min | Operational Status | | Method | | Pattern | Field Condit | | | 5/6/2003 | 5 | CALIBRATION
PIT | 1515 | 1520 | 5 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHANGE OUT
BATTERY | GPS | NA | NA | НОТ | DRY | | 5/6/2003 | 5 | CALIBRATION
PIT | 1520 | 1525 | 5 | COLLECTING DATA | COLLECT DATA OVER
PIT | GPS | NA | NA | НОТ | DRY | | 5/6/2003 | 5 | CALIBRATION
PIT | 1525 | 1535 | 10 | SET UP/MOBILIZATION | BREAKING DOWN
EQUIPMENT EOD | NA | NA | NA | НОТ | DRY | | 5/7/2003 | 4 | OPEN RANGE | 0715 | 0855 | 100 | SET UP/MOBILIZATION | SETTING UP
EQUIPMENT | NA | NA | NA | COOL/WINDY | DRY | | 5/7/2003 | 4 | OPEN RANGE | 0855 | 1035 | 100 | COLLECTING DATA | RUNNING OPEN
RANGE, GRID A2,
BIDIRECTIONAL E/W | GPS | NA | NA | COOL/WINDY | DRY | | 5/7/2003 | 4 | OPEN RANGE | 1035 | 1115 | 40 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING DATA | GPS | NA | NA | HOT/WINDY | DRY | | 5/7/2003 | 4 | OPEN RANGE | 1115 | 1125 | 10 | SET UP/MOBILIZATION | SETTING UP
EQUIPMENT | GPS | NA | NA | HOT/WINDY | DRY | | 5/7/2003 | 4 | OPEN RANGE | 1125 | 1300 | 95 | COLLECTING DATA | RUNNING OPEN
RANGE, GRID A3,
BIDIRECTIONAL E/W | GPS | NA | NA | HOT/WINDY | DRY | | 5/7/2003 | 4 | OPEN RANGE | 1300 | 1330 | 30 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING DATA | GPS | NA | NA | HOT/WINDY | DRY | | 5/7/2003 | 4 | OPEN RANGE | 1330 | 1350 | 20 | BREAK/LUNCH | BREAK | NA | NA | NA | HOT/WINDY | DRY | | 5/7/2003 | 4 | OPEN RANGE | 1350 | 1400 | 10 | SET UP/MOBILIZATION | SETTING UP
EQUIPMENT | NA | NA | NA | HOT/WINDY | DRY | | 5/7/2003 | 4 | OPEN RANGE | 1400 | 1530 | 90 | COLLECTING DATA | RUNNING OPEN
RANGE GRID G2,
BIDIRECTIONAL E/W | GPS | NA | NA | HOT/WINDY | DRY | | 5/7/2003 | 4 | OPEN RANGE | 1530 | 1550 | 20 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING DATA | GPS | NA | NA | HOT/WINDY | DRY | | 5/7/2003 | 4 | OPEN RANGE | 1550 | 1600 | 10 | SET UP/MOBILIZATION | BREAKING DOWN
EQUIPMENT EOD | NA | NA | NA | HOT/WINDY | DRY | | 5/8/2003 | 5 | OPEN RANGE | 0700 | 0745 | 45 | SET UP/MOBILIZATION | SETTING UP
EQUIPMENT | NA | NA | NA | COOL/WINDY | DRY | | 5/8/2003 | 5 | OPEN RANGE | 0745 | 0950 | 125 | COLLECTING DATA | RUNNING OPEN
RANGE, GRID G3,G4,
BIDIRECTIONAL E/W | GPS | NA | NA | COOL/WINDY | DRY | | D | ate | No.
of
People | Area Tested | Status
Start
Time | | Duration,
min | Operational Status | Operational Status -
Comments | Track
Method | Track
Method=Other
Explain | Pattern | Field Condit | tions | |------|-------|---------------------|--------------------|-------------------------|------|------------------|---|---|-----------------|----------------------------------|---------|--------------|-------| | 5/8/ | /2003 | 5 | OPEN RANGE | 0950 | 1020 | 30 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING DATA | GPS | NA | NA | COOL/WINDY | DRY | | 5/8/ | /2003 | 5 | BLIND TEST
GRID | 1020 | 1130 | 70 | COLLECTING DATA | RUNNING BTG
BIDIRECTIONAL
NORTH/ SOUTH | GPS | NA | NA | HOT/WINDY | DRY | | 5/8/ | /2003 | 5 | BLIND TEST
GRID | 1130 | 1145 | 15 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING DATA | GPS | NA | NA | HOT/WINDY | DRY | | 5/8/ | /2003 | 5 | BLIND TEST
GRID | 1145 | 1215 | 30 | BREAK/LUNCH | LUNCH | GPS | NA | NA | HOT/WINDY | DRY | | | /2003 | 5 | OPEN RANGE | 1215 | 1300 | 45 | SET UP/MOBILIZATION | LAYOUT LANES WITH
ROPE | NA | NA | NA | HOT/WINDY | DRY | | | /2003 | 5 | CALIBRATION
PIT | 1300 | 1440 | 100 | COLLECTING DATA | COLLECT DATA OVER
PIT | GPS | NA | NA | HOT/WINDY | DRY | | | /2003 | 5 | CALIBRATION
PIT | 1440 | 1500 | 20 | BREAK/LUNCH | BREAK | NA | NA | NA | HOT/WINDY | DRY | | | /2003 | 5 | OPEN RANGE | 1500 | 1550 | 50 | SET UP/MOBILIZATION | LAYOUT LANES WITH
ROPE | NA | NA | NA | HOT/WINDY | DRY | | | /2003 | 5 | OPEN RANGE | 1550 | 1600 | 10 | SET UP/MOBILIZATION | BREAKING DOWN
EQUIPMENT EOD | NA | NA | NA | HOT/WINDY | DRY | | | /2003 | 4 | OPEN RANGE | 0645 | 0720 | 35 | SET UP/MOBILIZATION | SETTING UP
EQUIPMENT | NA | NA | NA | COOL | DRY | | 5/9/ | /2003 | 4 | OPEN RANGE | 0720 | 0845 | 85 | COLLECTING DATA | RUNNING OPEN
RANGE, GRID
F2,F3,F4,F5
BIDIRECTIONAL E/W | GPS | NA | LINEAR | COOL/WINDY | DRY | | 5/9/ | /2003 | 4 | OPEN RANGE | 0845 | 0905 | 20 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING DATA | GPS | NA | NA | COOL/WINDY | DRY | | | /2003 | 4 | OPEN RANGE | 0905 | 1030 | 85 | COLLECTING DATA | RUNNING OPEN
RANGE, GRID
F2,F3,F4,F5
BIDIRECTIONAL E/W | GPS | NA | LINEAR | COOL/WINDY | DRY | | 5/9/ | /2003 | 4 | OPEN RANGE | 1030 | 1100 | 30 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING DATA | GPS | NA | NA | COOL/WINDY | DRY | | 5/9/ | 2003 | 4 | OPEN RANGE | 1100 | 1130 | 30 | BREAK/LUNCH | LUNCH | NA | NA | NA | COOL/WINDY | DRY | | | No. | | Status | Status | | | | | Track | | | | |-----------|--------|-------------|--------|--------|-----------|---|---|--------|--------------|---------|--------------|-----| | | of | | Start | | Duration, | | Operational Status - | Track | Method=Other | | | | | | People | Area Tested | Time | Time | min | Operational Status | Comments | Method | Explain | Pattern | Field Condit | | | 5/9/2003 | 4 | OPEN RANGE | 1130 | 1250 | 80 | COLLECTING DATA | RUNNING OPEN
RANGE, GRID
F2,F3,F4,F5
BIDIRECTIONAL E/W | GPS | NA | LINEAR | HOT/WINDY | DRY | | 5/9/2003 | 4 | OPEN RANGE | 1250 | 1300 | 10 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHANGE OUT
PROCESSOR UNIT | GPS | NA | NA | HOT/WINDY | DRY | | 5/9/2003 | 5 | OPEN RANGE | 1300 | 1330 | 30 | COLLECTING DATA | RUNNING OPEN
RANGE, GRID
F2,F3,F4,F5
BIDIRECTIONAL E/W | GPS | NA | LINEAR | HOT/WINDY | DRY | | 5/9/2003 | 5 | OPEN RANGE | 1330 | 1430 | 60 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | GPS | NA | NA | HOT/WINDY | DRY | | 5/9/2003 | 5 | OPEN RANGE | 1430 | 1445 | 15 | COLLECTING DATA | RUNNING OPEN
RANGE, GRID
F2,F3,F4,F5
BIDIRECTIONAL E/W | GPS | NA | LINEAR | HOT/WINDY | DRY | | 5/9/2003 | 5 | OPEN RANGE | 1445 | 1500 | 15 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHANGE OUT
BATTERY | GPS | NA | NA | HOT/WINDY | DRY | | 5/9/2003 | 5 | OPEN RANGE | 1500 | 1520 | 20 | COLLECTING DATA | RUNNING OPEN
RANGE, GRID
F2,F3,F4,F5
BIDIRECTIONAL E/W | GPS | NA | LINEAR | HOT/WINDY | DRY | | 5/9/2003 | 5 | OPEN RANGE | 1520 | 1540 | 20 | SET UP/MOBILIZATION | BREAKING DOWN
EQUIPMENT EOD | NA | NA | NA | HOT/WINDY | DRY | | 5/10/2003 | 5 | OPEN RANGE | 0630 | 0700 | 30 | SET UP/MOBILIZATION | SETTING UP
EQUIPMENT | NA | NA | NA | COOL | DRY | | 5/10/2003 | 5 | OPEN RANGE | 0700 | 0826 | 86 | COLLECTING DATA | RUNNING OPEN
RANGE, GRID
E2,E3,E4,E5
BIDIRECTIONAL E/W | GPS | NA | LINEAR | COOL | DRY | | 5/10/2003 | 5 | OPEN RANGE | 0826 | 0828 | 2 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | SWAPPED OUT FIELD
COMPUTER | GPS | NA | LINEAR | COOL | DRY | | 5/10/2003 | 5 | OPEN RANGE | 0828 | 1015 | 107 | COLLECTING DATA | RUNNING OPEN
RANGE, GRID
E2,E3,E4,E5
BIDIRECTIONAL E/W | GPS | NA | LINEAR | НОТ | DRY | | | No. | | Status | Status | | | | | Track | | | | |-----------|--------|-------------|--------|--------|-----------|---------------------|----------------------|--------|--------------|---------|------------|-----| | | of | | Start | | Duration, | | Operational Status - | | Method=Other | | | | | | People | Area Tested | Time | Time | min | Operational Status | Comments | Method | Explain | Pattern | Field Cond | | | 5/10/2003 | 5 | OPEN RANGE | 1015 | 1040 | 25 | BREAK/LUNCH | LUNCH | NA | NA | NA | HOT | DRY | | 5/10/2003 | 5 | OPEN RANGE | 1040 | 1100 | 20 | DOWNTIME DUE TO | CHECKING/ | GPS | NA | NA | HOT | DRY | | | | | | | | EQUIPMENT | DOWNLOADING | | | | | | | | | | | | | MAINTENANCE/CHECK | DATA | | | | | | | 5/10/2003 | 4 | OPEN RANGE | 1100 | 1243 | 103 | COLLECTING DATA | RUNNING | GPS | NA | LINEAR | HOT | DRY | | | | | | | | | OPENRANGE, GRID | | | | | | | | | | | | | | E2,E3,E4,E5 | | | | | | | | | | | | | | BIDIRECTIONAL E/W | | | | | | | 5/10/2003 | 4 | OPEN RANGE | 1243 | 1246 | 3 | DOWNTIME DUE TO | CHANGE OUT | GPS | NA | NA | HOT | DRY | | | | | | | | EQUIPMENT | PROCESSOR UNIT | | | | | | | | | | | | | MAINTENANCE/CHECK | | | | | | | | 5/10/2003 | 4 | OPEN RANGE | 1246 | 1340 | 54 | COLLECTING DATA | RUNNING OPEN | GPS | NA | LINEAR | HOT | DRY | | | | | | | | | RANGE, GRID | | | | | | | | | | | | | | E2,E3,E4,E5 | | | | | | | | | | | | | | BIDIRECTIONAL E/W | | | | | | | 5/10/2003 | 4 | OPEN RANGE | 1340 | 1400 | 20 | SET UP/MOBILIZATION | BREAKING DOWN | GPS | NA | NA | HOT | DRY | | | | | | | | | EQUIPMENT EOD | | | | | | | 5/12/2003 | 5 | OPEN RANGE | 0700 | 0721 | 21 | SET UP/MOBILIZATION | SETTING UP | GPS | NA | NA | HOT | DRY | | | | | | | | | EQUIPMENT | | | | | | | 5/12/2003 | 5 | OPEN RANGE | 0721 | 0725 | 4 | COLLECTING DATA | EQUIPMENT WAS | GPS | NA | NA | HOT | DRY | | | | | | | | | CALIBRATED USING | | | | | | | |
 | | | | | CAL BALL | | | | | | | 5/12/2003 | 5 | OPEN RANGE | 0725 | 0825 | 60 | COLLECTING DATA | RUNNING OPEN | GPS | NA | LINEAR | HOT | DRY | | | | | | | | | RANGE, GRID | | | | | | | | | | | | | | E2,E3,E4,E5 | | | | | | | | | | | | | | BIDIRECTIONAL E/W | | | | | | | 5/12/2003 | 5 | OPEN RANGE | 0825 | 0935 | 50 | DOWNTIME DUE TO | CHECKING/ | GPS | NA | NA | HOT | DRY | | | | | | | | EQUIPMENT | DOWNLOADING | | | | | | | | | | | | | MAINTENANCE/CHECK | DATA | | | | | | | 5/12/2003 | 5 | OPEN RANGE | 0935 | 1025 | 50 | COLLECTING DATA | RUNNING OPEN | GPS | NA | LINEAR | HOT | DRY | | | | | | | | | RANGE, GRID A4,A5 | | | | | | | | | | | | | | BIDIRECTIONAL E/W | | | | | | | 5/12/2003 | 5 | OPEN RANGE | 1025 | 1030 | 5 | DOWNTIME DUE TO | CHECKING/ | GPS | NA | NA | HOT | DRY | | | | | | | | EQUIPMENT | DOWNLOADING | | | | | | | | | | | | | MAINTENANCE/CHECK | DATA | | | | | 1 | | 5/12/2003 | 5 | OPEN RANGE | 1030 | 1325 | 175 | DOWNTIME DUE TO | WHEEL AXLE BROKE | NA | NA | NA | HOT | DRY | | L | | | | | | EQUIPMENT FAILURE | | | | | | | | 5/12/2003 | 5 | OPEN RANGE | 1325 | 1330 | 5 | SET UP/MOBILIZATION | BREAKING DOWN | NA | NA | NA | HOT | DRY | | | | | | | | | EQUIPMENT EOD | | | | | | | Date | No.
of
People | Area Tested | Status
Start
Time | Status
Stop
Time | Duration,
min | Operational Status | Operational Status -
Comments | Track
Method | Track
Method=Other
Explain | Pattern | Field Cond | ditions | |-----------|---------------------|-------------|-------------------------|------------------------|------------------|---|---|-----------------|----------------------------------|---------|------------|---------| | 5/13/2003 | 4 | OPEN RANGE | 1130 | 1215 | 45 | SET UP/MOBILIZATION | SETTING UP
EQUIPMENT | GPS | ÑA | NA | НОТ | DRY | | 5/13/2003 | 4 | OPEN RANGE | 1215 | 1300 | 45 | COLLECTING DATA | RUNNING OPEN
RANGE, A4,A5
BIDIRECTIONAL E/W | GPS | NA | LINEAR | НОТ | DRY | | 5/13/2003 | 4 | OPEN RANGE | 1300 | 1320 | 20 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | GPS | NA | NA | НОТ | DRY | | 5/13/2003 | 4 | OPEN RANGE | 1320 | 1430 | 70 | COLLECTING DATA | RUNNING OPEN
RANGE, A4,A5
BIDIRECTIONAL E/W | GPS | NA | LINEAR | НОТ | DRY | | 5/13/2003 | 4 | OPEN RANGE | 1430 | 1447 | 17 | BREAK/LUNCH | BREAK | NA | NA | NA | НОТ | DRY | | 5/13/2003 | 4 | OPEN RANGE | 1447 | 1535 | 48 | COLLECTING DATA | RUNNING OPEN
RANGE, A4,A5
BIDIRECTIONAL E/W | NA | NA | LINEAR | НОТ | DRY | | 5/13/2003 | 4 | OPEN RANGE | 1535 | 1545 | 10 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | GPS | NA | NA | НОТ | DRY | | 5/13/2003 | 4 | OPEN RANGE | 1545 | 1600 | 15 | SET UP/MOBILIZATION | BREAKING DOWN
EQUIPMENT EOD | NA | NA | NA | НОТ | DRY | | 5/14/2003 | | OPEN RANGE | 0630 | 0735 | 65 | SET UP/MOBILIZATION | SETTING UP
EQUIPMENT | NA | NA | NA | WARM | HUMID | | 5/14/2003 | 5 | OPEN RANGE | 0735 | 0739 | 4 | COLLECTING DATA | EQUIPMENT WAS
CALIBRATED USING
CAL BALL | GPS | NA | LINEAR | WARM | HUMID | | 5/14/2003 | | OPEN RANGE | 0739 | 0850 | 71 | COLLECTING DATA | RUNNING OPEN
RANGE, A4,A5
BIDIRECTIONAL E/W | GPS | NA | LINEAR | WARM | HUMID | | 5/14/2003 | | OPEN RANGE | 0850 | 0920 | 30 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | GPS | NA | NA | WARM | HUMID | | 5/14/2003 | 5 | OPEN RANGE | 0920 | 1020 | 60 | COLLECTING DATA | RUNNING OPEN
RANGE, D4,D5
BIDIRECTIONAL E/W | GPS | NA | LINEAR | WARM | HUMID | | 5/14/2003 | 5 | OPEN RANGE | 1020 | 1035 | 15 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | GPS | NA | NA | WARM | HUMID | | 5/14/2003 | 5 | OPEN RANGE | 1035 | 1130 | 55 | BREAK/LUNCH | LUNCH | NA | NA | NA | WARM | HUMID | | | No. | | Status | Status | | | | | Track | | | | |-----------|--------|-------------|--------|--------|-----------|---------------------|----------------------|--------|--------------|---------|------------|---------| | | of | | Start | Stop | Duration, | | Operational Status - | Track | Method=Other | | | | | Date | People | Area Tested | Time | Time | min | Operational Status | Comments | Method | Explain | Pattern | Field Cond | litions | | 5/14/2003 | 5 | OPEN RANGE | 1130 | 1325 | 115 | COLLECTING DATA | RUNNING OPEN | GPS | NA | LINEAR | WARM | HUMID | | | | | | | | | RANGE, D4,D5 | | | | | | | | | | | | | | BIDIRECTIONAL E/W | | | | | | | 5/14/2003 | 5 | OPEN RANGE | 1325 | 1400 | 35 | DOWNTIME DUE TO | CHECKING/ | GPS | NA | NA | WARM | HUMID | | | | | | | | EQUIPMENT | DOWNLOADING | | | | | | | | | | | | | MAINTENANCE/CHECK | DATA | | | | | | | 5/14/2003 | 5 | OPEN RANGE | 1400 | 1430 | 30 | BREAK/LUNCH | BREAK | NA | NA | NA | WARM | HUMID | | 5/14/2003 | 5 | OPEN RANGE | 1430 | 1530 | 120 | COLLECTING DATA | RUNNING OPEN | GPS | NA | LINEAR | WARM | HUMID | | | | | | | | | RANGE, D4,D5 | | | | | | | | | | | | | | BIDIRECTIONAL E/W | | | | | | | 5/14/2003 | 5 | OPEN RANGE | 1530 | 1600 | 30 | SET UP/MOBILIZATION | BREAKING DOWN | NA | NA | NA | WARM | HUMID | | | | | | | | | EQUIPMENT EOD | | | | | | | 5/15/2003 | 5 | OPEN RANGE | 0645 | 0710 | 25 | SET UP/MOBILIZATION | SETTING UP | NA | NA | NA | COOL | DRY | | | | | | | | | EQUIPMENT | | | | | | | 5/15/2003 | 5 | OPEN RANGE | 0710 | 0735 | 25 | COLLECTING DATA | RUNNING OPEN | GPS | NA | LINEAR | COOL | DRY | | | | | | | | | RANGE, B2,B3 | | | | | | | | | | | | | | BIDIRECTIONAL E/W | | | | | | | 5/15/2003 | 5 | OPEN RANGE | 0735 | 0742 | 7 | DOWNTIME DUE TO | CHECKING/ | GPS | NA | NA | COOL | DRY | | | | | | | | EQUIPMENT | DOWNLOADING | | | | | | | | | | | | | MAINTENANCE/CHECK | DATA | | | | | | | 5/15/2003 | 5 | OPEN RANGE | 0742 | 0750 | 8 | COLLECTING DATA | RUNNING OPEN | GPS | NA | LINEAR | COOL | DRY | | | | | | | | | RANGE, B2,B3 | | | | | | | | | | | | | | BIDIRECTIONAL E/W | | | | | | | 5/15/2003 | 5 | OPEN RANGE | 0750 | 0755 | 5 | DOWNTIME DUE TO | GPS DOWN | GPS | NA | NA | COOL | DRY | | | | | | | | EQUIPMENT FAILURE | | | | | | | | 5/15/2003 | 5 | OPEN RANGE | 0755 | 0925 | 90 | COLLECTING DATA | RUNNING OPEN | GPS | NA | LINEAR | COOL | DRY | | | | | | | | | RANGE, B2,B3 | | | | | | | | | | | | | | BIDIRECTIONAL E/W | | | | | | | 5/15/2003 | 5 | OPEN RANGE | 0925 | 0945 | 20 | DOWNTIME DUE TO | CHECKING/ | GPS | NA | NA | COOL | DRY | | | | | | | | EQUIPMENT | DOWNLOADING | | | | | | | | | | | | | MAINTENANCE/CHECK | DATA | | | | | | | 5/15/2003 | 5 | OPEN RANGE | 0945 | 1140 | 115 | COLLECTING DATA | RUNNING OPEN | GPS | NA | LINEAR | HOT | DRY | | | | | | | | | RANGE, B2,B3 | | | | | | | | | | | | | | BIDIRECTIONAL E/W | | | | | | | 5/15/2003 | 5 | OPEN RANGE | 1140 | 1150 | 10 | DOWNTIME DUE TO | CHECKING/ | GPS | NA | NA | HOT | DRY | | | | | | | | EQUIPMENT | DOWNLOADING | | | | | | | | | | | | | MAINTENANCE/CHECK | DATA | | | | | | | 5/15/2003 | 5 | OPEN RANGE | 1150 | 1250 | 60 | BREAK/LUNCH | CHOW | NA | NA | NA | HOT | DRY | | Date | No.
of
People | Area Tested | Status
Start
Time | Time | Duration,
min | Operational Status | Operational Status -
Comments | Track
Method | Track
Method=Other
Explain | Pattern | Field Cond | litions | |----------|---------------------|-------------|-------------------------|------|------------------|---|---|-----------------|----------------------------------|---------|------------|---------| | 5/15/200 | 3 5 | OPEN RANGE | 1250 | 1255 | 5 | SET UP/MOBILIZATION | SET UP ON C4,C5 | NA | NA | NA | HOT | DF | | 5/15/200 | 3 5 | OPEN RANGE | 1255 | 1320 | 25 | COLLECTING DATA | RUNNING OPEN
RANGE, C4,C5
BIDIRECTIONAL E/W | GPS | NA | LINEAR | НОТ | DR | | 5/15/200 | 3 5 | OPEN RANGE | 1320 | 1325 | 5 | DOWNTIME DUE TO
EQUIPMENT FAILURE | COMMUNICATION
ERROR INFIELD
COMPUTOR | GPS | NA | NA | НОТ | DF | | 5/15/200 | 3 5 | OPEN RANGE | 1325 | 1330 | 5 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHANGE OUT FIELD
COMPUTORS | GPS | NA | NA | НОТ | DF | | 5/15/200 | 3 5 | OPEN RANGE | 1330 | 1530 | 120 | COLLECTING DATA | RUNNING OPEN
RANGE, C4,C5
BIDIRECTIONAL E/W | GPS | NA | LINEAR | НОТ | DR | | 5/15/200 | 3 5 | OPEN RANGE | 1530 | 1600 | 30 | SET UP/MOBILIZATION | BREAKING DOWN
EQUIPMENT EOD | NA | NA | NA | НОТ | DR | | 5/16/200 | | OPEN RANGE | 0640 | 0655 | 15 | SET UP/MOBILIZATION | SETTING UP
EQUIPMENT | NA | NA | NA | COOL | DI | | 5/16/200 | 3 4 | OPEN RANGE | 0655 | 0700 | 5 | COLLECTING DATA | EQUIPMENT WAS
CALIBRATED USING
CAL BALL | GPS | NA | NA | COOL | DF | | 5/16/200 | 3 4 | OPEN RANGE | 0700 | 0825 | 85 | COLLECTING DATA | RUNNING OPEN
RANGE, C4,C5
BIDIRECTIONAL E/W | GPS | NA | LINEAR | COOL | DR | | 5/16/200 | 3 4 | OPEN RANGE | 0825 | 0850 | 25 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | GPS | NA | NA | COOL | DR | | 5/16/200 | 3 4 | OPEN RANGE | 0850 | 0900 | 10 | SET UP/MOBILIZATION | SET UP ON D3 | NA | NA | NA | COOL | DF | | 5/16/200 | | OPEN RANGE | 0900 | 1110 | 130 | COLLECTING DATA | RUNNING OPEN
RANGE, D3
BIDIRECTIONAL E/W | GPS | NA | LINEAR | НОТ | DI | | 5/16/200 | 3 4 | OPEN RANGE | 1110 | 1125 | 15 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | GPS | NA | NA | НОТ | DF | | 5/16/200 | 3 4 | OPEN RANGE | 1125 | 1235 | 70 | BREAK/LUNCH | CHOW | NA | NA | NA | HOT | DI | | 5/16/200 | 3 4 | OPEN RANGE | 1235 | 1330 | 55 | COLLECTING DATA | RUNNING OPEN
RANGE, D3
BIDIRECTIONAL E/W | GPS | NA | LINEAR | НОТ | DI | | 5/16/200 | 3 4 | OPEN RANGE | 1330 | 1410 | 40 | BREAK/LUNCH | BREAK | NA | NA | NA | HOT | D | | | No. | | Status | Status | | | | | Track | | | | |-----------|--------|-------------|--------|--------
-----------|-------------------------|----------------------|--------|--------------|---------|------------|--------| | | of | | Start | | Duration, | | Operational Status - | Track | Method=Other | | | | | Date | People | Area Tested | Time | Time | min | Operational Status | Comments | Method | Explain | Pattern | Field Cond | itions | | 5/16/2003 | 4 | OPEN RANGE | 1410 | 1515 | 65 | COLLECTING DATA | RUNNING OPEN | GPS | NA | LINEAR | НОТ | DRY | | | | | | | | | RANGE, D3 | | | | | | | | | | | | | | BIDIRECTIONAL E/W | | | | | | | 5/16/2003 | 4 | OPEN RANGE | 1515 | 1530 | 15 | DOWNTIME DUE TO | CHECKING/ | GPS | NA | NA | HOT | DRY | | | | | | | | EQUIPMENT | DOWNLOADING | | | | | | | | | | | | | MAINTENANCE/CHECK | DATA | | | | | | | 5/16/2003 | 4 | OPEN RANGE | 1530 | 1600 | 30 | SET UP/MOBILIZATION | BREAKING DOWN | NA | NA | NA | HOT | DRY | | | | | | | | | EQUIPMENT EOD | | | | | | | 5/17/2003 | 4 | OPEN RANGE | 0630 | 0715 | 45 | SET UP/MOBILIZATION | SETTING UP | NA | NA | NA | HOT | DRY | | | | | | | | | EQUIPMENT | | | | | | | 5/17/2003 | 4 | OPEN RANGE | 0715 | 0720 | 5 | COLLECTING DATA | EQUIPMENT WAS | GPS | NA | NA | HOT | DRY | | | | | | | | | CALIBRATED USING | | | | | | | | | | | | | | CAL BALL | | | | | | | 5/17/2003 | 4 | OPEN RANGE | 0720 | 0825 | 65 | COLLECTING DATA | RUNNING OPEN | GPS | NA | LINEAR | HOT | DRY | | | | | | | | | RANGE, D2 | | | | | | | | | | | | | | BIDIRECTIONAL E/W | | | | | | | 5/17/2003 | 4 | OPEN RANGE | 0825 | 0921 | 56 | DOWNTIME DUE TO | CHECKING/ | GPS | NA | NA | HOT | DRY | | | | | | | | EQUIPMENT | DOWNLOADING | | | | | | | | | | | | | MAINTENANCE/CHECK | DATA | | | | | | | 5/17/2003 | 4 | OPEN RANGE | 0921 | 1040 | 79 | COLLECTING DATA | RUNNING OPEN | GPS | NA | LINEAR | HOT | DRY | | | | | | | | | RANGE, B5 | | | | | | | | | | | | | | BIDIRECTIONAL E/W | | | | | | | 5/17/2003 | 4 | OPEN RANGE | 1040 | 1045 | 5 | DOWNTIME DUE TO | CHECKING/ | GPS | NA | NA | HOT | DRY | | | | | | | | EQUIPMENT | DOWNLOADING | | | | | | | | | | | | | MAINTENANCE/CHECK | DATA | | | | | | | 5/17/2003 | 4 | OPEN RANGE | 1045 | 1120 | 35 | BREAK/LUNCH | CHOW | NA | NA | NA | НОТ | DRY | | 5/17/2003 | 3 | OPEN RANGE | 1120 | 1230 | 70 | COLLECTING DATA | RUNNING OPEN | GPS | NA | LINEAR | HOT | DRY | | | | | | | | | RANGE, B5 | | | | | | | 5/15/2002 | - | OPENIANCE | 1220 | 10.15 | 1.5 | DOMNIED IE DIJE TO | BIDIRECTIONAL E/W | CDC | 37.4 | 27.4 | HOT | DDV | | 5/17/2003 | 3 | OPEN RANGE | 1230 | 1245 | 15 | DOWNTIME DUE TO | CHECKING/ | GPS | NA | NA | HOT | DRY | | | | | | | | EQUIPMENT | DOWNLOADING | | | | | | | 5/17/2002 | 2 | ODEN DANGE | 10.45 | 1225 | 50 | MAINTENANCE/CHECK | DATA | D.T.A | DT A | NT A | HOT | DDM | | 5/17/2003 | 3 | OPEN RANGE | 1245 | 1335 | 50 | BREAK/LUNCH | BREAK | NA | NA | NA | HOT | DRY | | 5/17/2003 | 3 | OPEN RANGE | 1335 | 1400 | 25 | COLLECTING DATA | CONDUCTED | GPS | NA | NA | НОТ | DRY | | | | | | | | | EQUIPMENT | | | | | | | 5/17/0000 | | ODEN DANCE | 1.400 | 1.420 | 20 | CET LIDA (ODIL 17 APTO) | INTERFERENCE TEST | NT A | 27.4 | NT A | HOT | DDV | | 5/17/2003 | 3 | OPEN RANGE | 1400 | 1430 | 30 | SET UP/MOBILIZATION | BREAKING DOWN | NA | NA | NA | НОТ | DRY | | | | | | | | | EQUIPMENT EOD | | | | | | | Ī | No. | | Status | Status | | | | | Track | | | | |-----------|--------|-------------|--------|--------|-----------|---|---|--------|--------------|---------|------------|--------| | | of | | Start | | Duration, | | Operational Status - | Track | Method=Other | | | | | Date | People | Area Tested | Time | Time | min | Operational Status | Comments | Method | Explain | Pattern | Field Cond | itions | | 5/19/2003 | 4 | OPEN RANGE | 0600 | 0615 | 15 | SET UP/MOBILIZATION | SETTING UP
EQUIPMENT | NA | NA | NA | НОТ | DRY | | 5/19/2003 | 4 | OPEN RANGE | 0615 | 0620 | 5 | COLLECTING DATA | EQUIPMENT WAS
CALIBRATED USING
CAL BALL | GPS | NA | NA | НОТ | DRY | | 5/19/2003 | 4 | OPEN RANGE | 0620 | 0743 | 83 | COLLECTING DATA | RUNNING OPEN
RANGE, B4
BIDIRECTIONAL E/W | GPS | NA | LINEAR | НОТ | DRY | | 5/19/2003 | 4 | OPEN RANGE | 0743 | 0815 | 32 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | NA | NA | NA | НОТ | DRY | | 5/19/2003 | 4 | OPEN RANGE | 0815 | 0930 | 75 | COLLECTING DATA | RUNNING OPEN
RANGE, B4
BIDIRECTIONAL E/W | GPS | NA | LINEAR | НОТ | DRY | | 5/19/2003 | 4 | OPEN RANGE | 0930 | 0945 | 15 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | NA | NA | NA | НОТ | DRY | | 5/19/2003 | 4 | OPEN RANGE | 0945 | 0950 | 5 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHANGE OUT
BATTERY | NA | NA | NA | НОТ | DRY | | 5/19/2003 | 4 | OPEN RANGE | 0950 | 0955 | 5 | BREAK/LUNCH | BREAK | NA | NA | NA | HOT | DRY | | 5/19/2003 | 4 | OPEN RANGE | 0955 | 1005 | 10 | COLLECTING DATA | RUNNING OPEN
RANGE, B4
BIDIRECTIONAL E/W | GPS | NA | LINEAR | НОТ | DRY | | 5/19/2003 | 4 | OPEN RANGE | 1005 | 1010 | 5 | SET UP/MOBILIZATION | SET UP ON GRID C2,C3 | NA | NA | NA | HOT | DRY | | 5/19/2003 | 4 | OPEN RANGE | 1010 | 1024 | 14 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | GPS | NA | NA | НОТ | DRY | | 5/19/2003 | 4 | OPEN RANGE | 1024 | 1130 | 66 | COLLECTING DATA | RUNNING OPEN
RANGE, C2,C3
BIDIRECTIONAL E/W | GPS | NA | LINEAR | НОТ | DRY | | 5/19/2003 | 4 | OPEN RANGE | 1130 | 1145 | 15 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | GPS | NA | NA | НОТ | DRY | | 5/19/2003 | 4 | OPEN RANGE | 1145 | 1310 | 85 | BREAK/LUNCH | CHOW/BREAK | NA | NA | NA | НОТ | DRY | | 5/19/2003 | 4 | OPEN RANGE | 1310 | 1410 | 60 | COLLECTING DATA | RUNNING OPEN
RANGE, C2,C3
BIDIRECTIONAL E/W | GPS | NA | LINEAR | НОТ | DRY | | Ī | | No.
of | | Start | | Duration, | | Operational Status - | Track
Method | Track
Method=Other | | | | |---|-------------------|-----------|-----------------|-------|-------|-----------|---|---|-----------------|-----------------------|---------|------------|------| | ļ | | People | Area Tested | Time | Time | min | Operational Status | Comments | | Explain | Pattern | Field Cond | | | | 5/19/2003 | 4 | OPEN RANGE | 1410 | 1420 | 10 | DOWNTIME DUE TO | CHECKING/ | GPS | NA | NA | HOT | DRY | | | | | | | | | EQUIPMENT | DOWNLOADING | | | | | | | ļ | - / / C / C C C C | | 00011011100 | 1.120 | 1.120 | 4.0 | MAINTENANCE/CHECK | DATA | 27.1 | 37. | 27. | *** | DD11 | | l | 5/19/2003 | 4 | OPEN RANGE | 1420 | 1430 | 10 | SET UP/MOBILIZATION | BREAKING DOWN
EQUIPMENT EOD | NA | NA | NA | НОТ | DRY | | I | 5/20/2003 | 4 | OPEN RANGE | 0530 | 0545 | 15 | SET UP/MOBILIZATION | SETTING UP
EQUIPMENT | NA | NA | NA | НОТ | DRY | | | 5/20/2003 | 4 | OPEN RANGE | 0545 | 0549 | 4 | COLLECTING DATA | EQUIPMENT WAS
CALIBRATED USING
CAL BALL | GPS | NA | NA | НОТ | DRY | | I | 5/20/2003 | 4 | OPEN RANGE | 0549 | 0718 | 89 | COLLECTING DATA | RUNNING OPEN
RANGE, C2,C3
BIDIRECTIONAL E/W | GPS | NA | LINEAR | НОТ | DRY | | | 5/20/2003 | 4 | OPEN RANGE | 0718 | 0738 | 20 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | GPS | NA | NA | НОТ | DRY | | ı | 5/20/2003 | 4 | OPEN RANGE | 0738 | 0805 | 27 | BREAK/LUNCH | BREAK | NA | NA | NA | НОТ | DRY | | Î | 5/20/2003 | 4 | OPEN RANGE | 0805 | 0847 | 42 | COLLECTING DATA | RUNNING OPEN
RANGE, C2,C3
BIDIRECTIONAL E/W | GPS | NA | LINEAR | НОТ | DRY | | | 5/20/2003 | 4 | OPEN RANGE | 0847 | 0900 | 13 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | GPS | NA | NA | НОТ | DRY | | | 5/20/2003 | 4 | OPEN RANGE | 0900 | 0937 | 37 | COLLECTING DATA | RUNNING OPEN
RANGE, C2,C3
BIDIRECTIONAL E/W | GPS | NA | LINEAR | НОТ | DRY | | | 5/20/2003 | 4 | OPEN RANGE | 0937 | 0952 | 15 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | GPS | NA | NA | НОТ | DRY | | İ | 5/20/2003 | 4 | OPEN RANGE | 0952 | 1012 | 20 | BREAK/LUNCH | BREAK | NA | NA | NA | НОТ | DRY | | Ī | 5/20/2003 | 4 | YUMA
EXTREME | 1012 | 1024 | 12 | SET UP/MOBILIZATION | SET UP IN YUMA
EXTREME | NA | NA | NA | НОТ | DRY | | | 5/20/2003 | 4 | YUMA
EXTREME | 1024 | 1111 | 47 | COLLECTING DATA | RUNNING YUMA
EXTREME
BIDIRECTIONAL
NORTH/SOUTH | GPS | NA | LINEAR | НОТ | DRY | | | | No. | | | Status | | | | Track | Track | | | | |------|-------------|--------|-----------------|-------|--------|-----------|---|---|--------|--------------|---------|------------|-----| | | | of | | Start | | Duration, | | I | Method | Method=Other | | | | | | | People | Area Tested | Time | Time | min | Operational Status | Comments | | Explain | Pattern | Field Cond | | | | 5/20/2003 | 4 | YUMA
EXTREME | 1111 | 1130 | 19 | DOWNTIME DUE TO EQUIPMENT | CHECKING/
DOWNLOADING | GPS | NA | NA | НОТ | DRY | | | 5 (20 (2002 | | 37773.64 | 1120 | 1000 | | MAINTENANCE/CHECK | DATA | 27.4 | 37.4 | 27.4 | HOT | DDI | | | 5/20/2003 | 4 | YUMA
EXTREME | 1130 | 1230 | 60 | BREAK/LUNCH | LUNCH | NA | NA | NA | НОТ | DRY | | | 5/20/2003 | 4 | YUMA
EXTREME | 1230 | 1245 | 15 | SET UP/MOBILIZATION | SETUP | NA | NA | NA | НОТ | DRY | | | 5/20/2003 | 4 | YUMA
EXTREME | 1245 | 1248 | 3 | COLLECTING DATA | EQUIPMENT WAS
CALIBRATED USING
CAL BALL | GPS | NA | NA | НОТ | DRY | | · | 5/20/2003 | 4 | YUMA
EXTREME | 1248 | 1255 | 7 | COLLECTING DATA | RUNNING YUMA
EXTREME
BIDIRECTIONAL
NORTH/SOUTH | GPS | NA | LINEAR | НОТ | DRY | | | 5/20/2003 | 4 | YUMA
EXTREME | 1255 | 1300 | 5 | DOWNTIME DUE TO EQUIPMENT FAILURE | FIELD COMPUTER
OVERHEAT/FAILED | NA | NA | NA | НОТ | DRY | | |
5/20/2003 | 4 | YUMA
EXTREME | 1300 | 1310 | 10 | SET UP/MOBILIZATION | BREAKING DOWN
EQUIPMENT EOD | NA | NA | NA | НОТ | DRY | | D-12 | 5/21/2003 | 3 | YUMA
EXTREME | 0530 | 0550 | 20 | SET UP/MOBILIZATION | SETTING UP
EQUIPMENT | NA | NA | NA | НОТ | DRY | |) | 5/21/2003 | 3 | YUMA
EXTREME | 0550 | 0600 | 10 | COLLECTING DATA | EQUIPMENT WAS
CALIBRATED USING
CAL BALL | GPS | NA | NA | НОТ | DRY | | | 5/21/2003 | 3 | YUMA
EXTREME | 0600 | 0605 | 5 | COLLECTING DATA | RUNNING YUMA
EXTREME
BIDIRECTIONAL
NORTH/SOUTH | GPS | NA | LINEAR | НОТ | DRY | | • | 5/21/2003 | 3 | YUMA
EXTREME | 0605 | 0614 | 9 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | GPS | NA | NA | НОТ | DRY | | | 5/21/2003 | 3 | YUMA
EXTREME | 0614 | 0750 | 96 | COLLECTING DATA | RUNNING YUMA
EXTREME
BIDIRECTIONAL
NORTH/SOUTH | GPS | NA | LINEAR | НОТ | DRY | | | 5/21/2003 | 3 | YUMA
EXTREME | 0750 | 0810 | 20 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | GPS | NA | NA | НОТ | DRY | | | Date | People | Area Tested | 1 ime | Time | mın | Operational Status | Comments | Method | Explain | Pattern | riela Conai | luons | |------|-----------|----------------|-----------------|-------|------|-----------------|---|---|--------|---------|----------|-------------|-------| | | 5/21/2003 | 3 | YUMA
EXTREME | 0810 | 0820 | 10 | BREAK/LUNCH | BREAK | NA | NA | NA | НОТ | DRY | | | 5/21/2003 | 3 | YUMA
EXTREME | 0820 | 0850 | 30 | COLLECTING DATA | RUNNING YUMA
EXTREME
BIDIRECTIONAL
NORTH/SOUTH | GPS | NA | LINEAR | НОТ | DRY | | | 5/21/2003 | 3 | YUMA
EXTREME | 0850 | 0920 | 30 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | GPS | NA | NA | НОТ | DRY | | | 5/21/2003 | 3 | MOGUL AREA | 0920 | 0930 | 10 | SET UP/MOBILIZATION | SET UP IN MOGUL
AREA | NA | NA | NA | HOT | DRY | | | 5/21/2003 | <mark>3</mark> | MOGUL AREA | 0930 | 1040 | <mark>70</mark> | COLLECTING DATA | RUNNING MOGUL
AREA,
BIDIRECTIONAL
NORTH/SOUTH | GPS | NA | LINEAR | HOT | DRY | | _ | 5/21/2003 | 3 | MOGUL AREA | 1040 | 1100 | <mark>20</mark> | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | GPS | NA | NA | HOT | DRY | | D-13 | 5/21/2003 | 3 | MOGUL AREA | 1100 | 1158 | <mark>58</mark> | COLLECTING DATA | RUNNING MOGUL
AREA,
BIDIRECTIONAL
NORTH/SOUTH | GPS | NA | LINEAR | HOT | DRY | | | 5/21/2003 | 3 | MOGUL AREA | 1158 | 1210 | 12 | DOWNTIME DUE TO EQUIPMENT FAILURE | GPS MOUNT BROKE,
OPERATOR ERROR | NA | NA | NA | HOT | DRY | | | 5/21/2003 | <mark>3</mark> | MOGUL AREA | 1210 | 1230 | <mark>20</mark> | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | GPS | NA | NA | HOT | DRY | | | 5/21/2003 | <mark>3</mark> | MOGUL AREA | 1230 | 1237 | <mark>7</mark> | COLLECTING DATA | EQUIPMENT WAS CALIBRATED USING CAL BALL | GPS | NA | NA
NA | HOT | DRY | | | 5/21/2003 | 3 | MOGUL AREA | 1237 | 1322 | <mark>45</mark> | COLLECTING DATA | RUNNING MOGUL
AREA,
BIDIRECTIONAL
NORTH/SOUTH | GPS | NA | LINEAR | HOT | DRY | | | | | | | | | | | | | | | | **Operational Status** DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK **Operational Status -** Comments CHECKING/ DOWNLOADING DATA **GPS** NA NA **HOT** DRY Track Explain Pattern **Field Conditions** Track | Method=Other Method Note: Activities pertinent to this specific demonstration are indicated in highlighted text. Status Status Time MOGUL AREA 1322 1335 **Area Tested** of People Date 5/21/2003 Start Stop Duration, min Time | L | _ | |----------|---| | ì | _ | | \vdash | _ | | 1 | \ | | 7 | | | | | | Date | No.
of
People | Area Tested | Status
Start
Time | Status
Stop
Time | Duration,
min | Operational Status | Operational Status -
Comments | Track
Method | Track
Method=Other
Explain | Pattern | Field Cond | ditions | |-----------|---------------------|--------------------|-------------------------|------------------------|------------------|---|---|-----------------|----------------------------------|---------|------------|---------| | 5/21/2003 | 3 | MOGUL AREA | 1335 | 1445 | <mark>70</mark> | COLLECTING DATA | RUNNING MOGUL
AREA,
BIDIRECTIONAL
NORTH/SOUTH | GPS | NA
NA | LINEAR | HOT | DRY | | 5/21/2003 | 3 | MOGUL AREA | 1445 | 1500 | 15 | SET UP/MOBILIZATION | BREAKING DOWN EQUIPMENT EOD | NA | NA | NA | HOT | DRY | | 5/22/2003 | 3 | YUMA
EXTREME | 0530 | 0637 | 67 | SET UP/MOBILIZATION | SETTING UP
EQUIPMENT | NA | NA | NA | НОТ | DRY | | 5/22/2003 | 3 | YUMA
EXTREME | 0637 | 0642 | 5 | COLLECTING DATA | EQUIPMENT WAS
CALIBRATED USING
CAL BALL | GPS | NA | NA | НОТ | DRY | | 5/22/2003 | 3 | YUMA
EXTREME | 0642 | 0745 | 63 | COLLECTING DATA | RUNNING YUMA
EXTREME
BIDIRECTIONAL
NORTH/SOUTH | GPS | NA | LINEAR | НОТ | DRY | | 5/22/2003 | 3 | YUMA
EXTREME | 0745 | 0800 | 15 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | GPS | NA | NA | НОТ | DRY | | 5/22/2003 | 3 | YUMA
EXTREME | 0800 | 0930 | 90 | COLLECTING DATA | RUNNING YUMA
EXTREME
BIDIRECTIONAL
NORTH/SOUTH | GPS | NA | LINEAR | НОТ | DRY | | 5/22/2003 | 3 | YUMA
EXTREME | 0930 | 0935 | 5 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | SWAP OUT
BATTERIES | NA | NA | NA | НОТ | DRY | | 5/22/2003 | 3 | YUMA
EXTREME | 0935 | 0950 | 15 | COLLECTING DATA | RUNNING YUMA
EXTREME
BIDIRECTIONAL
NORTH/SOUTH | GPS | NA | LINEAR | НОТ | DRY | | 5/22/2003 | 3 | YUMA
EXTREME | 0950 | 1005 | 15 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | GPS | NA | NA | НОТ | DRY | | 5/22/2003 | 3 | YUMA
EXTREME | 1005 | 1020 | 15 | BREAK/LUNCH | BREAK | NA | NA | NA | НОТ | DRY | | 5/22/2003 | 3 | CALIBRATION
PIT | 1020 | 1028 | 8 | SET UP/MOBILIZATION | SET UP OVER
CALIBRATION PIT | NA | NA | NA | НОТ | DRY | | 5/22/2003 | 3 | CALIBRATION
PIT | 1028 | 1030 | 2 | COLLECTING DATA | EQUIPMENT WAS
CALIBRATED USING
CAL BALL | GPS | NA | NA | НОТ | DRY | Note: Activities pertinent to this specific demonstration are indicated in highlighted text. | Date | No.
of
People | Area Tested | Status
Start
Time | Status
Stop
Time | Duration,
min | Operational Status | Operational Status -
Comments | Track
Method | Track
Method=Other
Explain | Pattern | Field Condi | tions | |-----------|---------------------|--------------------|-------------------------|------------------------|------------------|---|---|-----------------|----------------------------------|---------|-------------|-------| | 5/22/2003 | 3 | CALIBRATION
PIT | 1030 | 1052 | 22 | COLLECTING DATA | RUNNING SIGNITURE
DATA ON 40MM
MARK II | GPS | NA | LINEAR | НОТ | DRY | | 5/22/2003 | 3 | CALIBRATION
PIT | 1052 | 1105 | 13 | COLLECTING DATA | RUNNING SIGNITURE
DATA ON 57MM | GPS | NA | LINEAR | НОТ | DRY | | 5/22/2003 | 3 | CALIBRATION
PIT | 1105 | 1128 | 23 | COLLECTING DATA | RUNNING SIGNITURE
DATA ON 60MM | GPS | NA | LINEAR | НОТ | DRY | | 5/22/2003 | 3 | CALIBRATION
PIT | 1128 | 1138 | 10 | BREAK/LUNCH | BREAK | NA | NA | NA | НОТ | DRY | | 5/22/2003 | 3 | CALIBRATION
PIT | 1138 | 1149 | 11 | DOWNTIME DUE TO
EQUIPMENT
MAINTENANCE/CHECK | CHECKING/
DOWNLOADING
DATA | GPS | NA | NA | НОТ | DRY | | 5/22/2003 | 3 | CALIBRATION
PIT | 1149 | 1240 | 51 | BREAK/LUNCH | LUNCH | NA | NA | NA | НОТ | DRY | | 5/22/2003 | 3 | CALIBRATION
PIT | 1240 | 1243 | 3 | COLLECTING DATA | EQUIPMENT WAS
CALIBRATED USING
CAL BALL | GPS | NA | NA | НОТ | DRY | | 5/22/2003 | 3 | CALIBRATION
PIT | 1243 | 1255 | 12 | COLLECTING DATA | RUNNING SIGNITURE
DATA ON ROCKEYE
MK118 | GPS | NA | LINEAR | НОТ | DRY | | 5/22/2003 | 3 | CALIBRATION
PIT | 1255 | 1320 | 25 | COLLECTING DATA | RUNNING SIGNITURE
DATA ON 2.75
ROCKET | GPS | NA | LINEAR | НОТ | DRY | | 5/22/2003 | 3 | CALIBRATION
PIT | 1320 | 1347 | 27 | COLLECTING DATA | RUNNING SIGNITURE
DATA ON 105
STANDARD | GPS | NA | LINEAR | НОТ | DRY | | 5/22/2003 | | CALIBRATION
PIT | 1347 | 1412 | 25 | COLLECTING DATA | RUNNING SIGNITURE
DATA ON 155MM | GPS | NA | LINEAR | НОТ | DRY | | 5/22/2003 | 3 | CALIBRATION
PIT | 1412 | 1414 | 2 | COLLECTING DATA | EQUIPMENT WAS
CALIBRATED USING
CAL BALL | GPS | NA | NA | НОТ | DRY | | 5/22/2003 | 3 | CALIBRATION
PIT | 1414 | 1500 | <mark>46</mark> | DEMOBILIZATION | END OF TEST | NA | NA | NA | HOT | DRY | Note: Activities pertinent to this specific demonstration are indicated in highlighted text. ## APPENDIX E. REFERENCES - 1. Standardized UXO Technology Demonstration Site Handbook, DTC Project No. 8-CO-160-000-473, Report No. ATC-8349, March 2002. - 2. Aberdeen Proving Ground Soil Survey Report, October 1998. - 3. Data Summary, UXO Standardized Test Site: APG Soils Description, May 2002. - 4. Yuma Proving Ground Soil Survey Report, May 2003. - 5. Practical Nonparametric Statistics, W.J. Conover, John Wiley & Sons, 1980, ages 144 through 151. ## APPENDIX F. ABBREVIATIONS AEC = U.S. Army Environmental Center APG = Aberdeen Proving Ground ATC = U.S. Army Aberdeen Test Center HEAT = high-explosive, antitank EMI = electromagnetic interference EMIS = Electromagnetic Induction Spectroscopy ERDC = U.S. Army Corps of Engineers Engineering Research and Development Center ESTCP = Environmental Security Technology Certification Program EQT = Army Environmental Quality Technology Program GPS = Global Positioning System JPG = Jefferson Proving Ground PDA = personal digital assistant POC = point
of contact PVC = polyvinyl chloride QA = quality assurance QC = quality control ROC = receiver-operating characteristic RTK = real time kinematic SERDP = Strategic Environmental Research and Development Program UXO = unexploded ordnance YPG = U.S. Army Yuma Proving Ground